The Effect of Waiting and 'Pushy' Sales Staff on Customer Satisfaction

Nicole Hartley, University of Sydney, Australia
Tony Ward, Central Queensland University

This paper examines the impact that waiting time and sales ‘pushiness’ have on service quality and customer satisfaction in a retail setting. The study was conducted on a random sample of 537 customers who were interviewed immediately after engaging in a customer service encounter in which some customers were exposed to having to wait to be served and others to sales pushiness. This research found that waiting and sales pushiness both had a significant impact on customer perceptions of service quality and customer satisfaction.

[to cite]:

[url]:
http://www.acrwebsite.org/volumes/13077/volumes/ap07/AP-07

[copyright notice]:
This work is copyrighted by The Association for Consumer Research. For permission to copy or use this work in whole or in part, please contact the Copyright Clearance Center at http://www.copyright.com/.
THE EFFECT OF WAITING AND ‘PUSHY’ SALES STAFF ON CUSTOMER SATISFACTION
Nicole Hartley, University of Sydney
Tony Ward, Central Queensland University

ABSTRACT
This paper examines the impact that waiting time and sales pushiness have on service quality and customer satisfaction in a retail setting. The study was conducted on a random sample of 537 customers who were interviewed immediately after engaging in a customer service encounter in which some customers were exposed to waiting to be served and others to sales pushiness. This research found that sales pushiness had a significant impact on customer perceptions of service quality and customer satisfaction, while the effect of waiting was small.

CUSTOMER SERVICE QUALITY
Researchers have highlighted the need to further investigate service quality domains to facilitate and enhance relationship development between customer service providers and customers within the field of services marketing (Gummesson 1987; Svensson 2004). This paper aims to examine the marketing implications of the sociological impact of waiting and sales pushiness on consumers thereby identifying possible consumption boundaries in service encounters.

Studies encompassing the dimensions of service quality have defined the construct as, ‘perceptions resulting from a comparison of customer expectations with actual service performance’ (Parasuraman, Zeithaml and Berry 1985, 42) and identified it as a critical driving force in facilitating these relationships and their associated customer service outcomes.

Researchers have acknowledged the multidimensionality of service quality (Dabhholkar, Thorpe and Rentz 1996; Grönroos 1982; Parasuraman, Zeithaml and Berry 1985, 1988; Rust and Oliver 1994) with an extensive amount of service literature devoted to both the conceptualisation and empirical measurement of service quality (Cronin and Taylor 1992; Dabhholkar, Thorpe and Rentz 1996; Garvin 1987; Grönroos 1982, 1984, 1988, 2000; Gummesson 1987; Lehtinen and Lehtinen 1991; Parasuraman, Zeithaml and Berry 1988; Rust and Oliver 1994; Ziehtaml, Parasuraman and Berry 1990). Within the service industry, Grönroos (1984) categorised service quality into two dimensions—technical service quality and functional service quality. Broadly speaking, technical service quality focuses on the benefits received by the customer while functional service quality focuses on the actual service delivery process (Grönroos 1984). This form of service quality categorisation translates well to the retail shopping industry. For example, a study conducted by Bishop-Gagliano and Hathcote (1994) undertaken in a retail context operationalised technical service quality as: in-store credit, returns/exchanges, variety, quality and dependability of service and price of after-sale service and functional service quality as: attitude, courteous, knowledgeable and helpful staff, prompt attention, prompt processing of transactions and individual attention/service. In addition to these service quality dimensions other auxiliary factors have been identified as influencing the customer service encounter, including: dimensions such as waiting time, politeness of customer service staff, pushiness of sales staff trying to make a sale, and experience of service staff as determinants of service quality in a retail setting (Mayer and Morin 1987).

For the purposes of this research, two particular service quality dimensions were assessed. Firstly, waiting time—or the experience of waiting, as perceived by the customer. This dimension is receiving increasing attention in the literature under the domain of queuing theory—which purports that the perceptions of service quality have the potential to be influenced by the consumer’s experience of waiting (Soloman, Bamossy and Askegaard 1999). For this research, waiting is defined as: ‘a wait that is perceived by the customer as a wait prior to being served’. The second dimension is the possible effect of pushiness of sales staff on customer outcomes of the service encounter. The justification for this focus on waiting and pushiness is the empirical gap in the literature using the Grönroos typology in a retail context. Within this study pushiness is defined as: ‘actions by a service provider that the customer perceives as pushing for a sale’.

CUSTOMER SATISFACTION
There is evidence in the service literature to suggest that customer satisfaction is a prerequisite for other customer service outcomes, such as customer retention and customer loyalty, not to mention tangible gains such as sales/profitability and market share for service organisations (Hackl and Westlund 2000; Reichheld 1996). Specifically, losing a customer results not only in the immediate loss of sales and continuing long term profits, but also the costs associated with the replacement of that customer (Reichheld and Sasser 1990), and the potential for negative word-of-mouth.

Previous customer satisfaction research undertaken in relation to customer service quality outcomes—specifically, customer reactions to both waiting and pushy customer service providers—has indicated that a number of anecdotal relationships may exist, including: 1) customer satisfaction levels as influenced by waiting in certain (unspecified) situations; 2) instances where customers could see that staff were ‘doing their best’ to serve people quickly they would be more forgiving than if it was due to inefficiency; and, 3) reactions to pushy sales staff have been mixed, with some customers disliking it intensely and others being quite tolerant (Ward and Acutt 2000).

In review, this research focused on the impact of waiting and pushiness in a service encounter (in a retail setting) on both functional customer service quality (FCSQ), technical customer service quality (TCSQ) as well as customer satisfaction levels.

HYPOTHESES
Figure 1 shows the theoretical framework for the research which identifies that there are two independent variables, the reason for the wait and the persuasiveness of the pushiness of making a sale, two moderating variables,
the acceptability of the wait and pushiness as perceived by the customer and three dependent variables, FCSQ, TCSQ and customer satisfaction.

As a result of the review of the service quality and customer satisfaction literature, the following hypotheses were formulated:

H1: There is a positive relationship between the level of acceptability of a waiting period to be served, as perceived by the customer, with functional service quality, and as moderated by the reason for the wait.

H2: There is a positive relationship between the level of acceptability of a waiting period to be served, as perceived by the customer, with technical service quality, and as moderated by the reason for the wait.

H3: There is a positive relationship between the level of acceptability of a service provider trying to push a customer into making a purchase, as perceived by the customer, with functional service quality, and as moderated by the persuasiveness of the service provider.

H4: There is a positive relationship between the level of acceptability of a service provider trying to push a customer into making a purchase, as perceived by the customer, with technical service quality, and as moderated by the persuasiveness of the service provider.

H5: There is a positive relationship between the level of acceptability of a waiting period to be served, as perceived by the customer, with customer satisfaction (CSAT), and as moderated by the reason for the wait.

H6: There is a positive relationship between the level of acceptability of a service provider trying to push a customer into making a purchase, as perceived by the customer, with CSAT, and as moderated by the persuasiveness of the service provider.

METHOD

Measurement of Service Quality

The test instrument, in the form of a questionnaire, was developed from the literature (Brown and Swartz 1989; Grönroos 1982; and, Parasuraman, Zeithaml and Berry 1988) and previous research conducted by the research team into customer service over the past ten years (for example, Preece and Ward 1999; Ward and Smith 1998). Different attributes of each of the dimensions were measured (otherwise known as multi-attribute measurements), representing a widely accepted method of measuring perspectives of customer service quality, as follows:

- technical service quality (Grönroos, 1982), a measure of the technical aspects of the customer service provision as perceived by the consumer, they included three scale items: professionalism, efficiency and provision of the exact service required (scale: very poor to very good). This aspect is identified as Technical Customer Service Performance (TCSP) in this study;

- functional service quality reflecting the manner in which the customer service providers’ services were performed, they included six scale items: being friendly, helpful, understanding, listening, communicating and giving full attention (scale: very poor to very good). This
aspect is identified as Functional Customer Service Performance (FCSQ) in this study; ancillary aspects – whether the customer had to wait to be served (Yes/No), how acceptable the wait was to the customer (scale: very UNacceptable to very acceptable) as well as the reason for the wait as perceived by the customer either due to understaffing or inefficient staff (scale: very UNlikely to very likely). Also, whether the staff tried to push a sale (Yes/No), the manner in which the customer perceived the ‘push’ (scale: very UNacceptable manner to very acceptable manner) and the impact this ‘pushiness’ had on the customers’ propensity to purchase (scale: very UNlikely to very likely).

All scale items were measured on a bi-polar semantic differential seven-point scale from one to seven that provided interval data.

Measurement of Customer Satisfaction

Conceptually, customer satisfaction is recognised as a distinct and eminent marketing construct. However, there are disparities in the literature as to how best to operationalise it (Bitner and Hubert 1994; Cronin and Taylor 1992; Crosby and Stephens 1987; Price, Arnold and Tierney 1995; Suprenant and Soloman 1987; Westbrook and Oliver 1981). However, in keeping with the parsimonious approach of previous researchers such as Cronin and Taylor (1992) this study adopted a one-item scale asking the overall customers satisfaction with the customer service encounter they had just experienced (scale: very poor to very good).

Survey administration

As there were a number of variables to be measured to test the hypotheses, a quantitative test instrument was selected as the best way of gathering data. It was determined that customers should be interviewed in situ for the fieldwork as: 1) the consumer perceptions of the customer service encounter would be fresh in their minds, and; 2) mail and phone surveys would not be likely to solicit good or accurate responses. The survey instrument was pilot tested and refined prior to the main data gathering fieldwork commencing. The survey was then administered in two self-contained shopping centres in Queensland. This administration was conducted on different days of the week and at different times to ensure that a representative and random sample of members of the general public was obtained. Respondents were randomly intercepted when leaving a variety of retail stores in the centres immediately after being served, thus ensuring that respondents had the service encounter fresh in their minds. Potential respondents who were not observed being served in each store were not intercepted. Thus, for every respondent a service encounter between service provider and customer had been observed to take place.

RESULTS

The final sample, once the data set had been cleaned, was 537 customers, who were served by 86 different service providers, in 29 different retail stores. A total of 220 females and 286 males were interviewed. The main measures of Functional Customer Service Quality (FCSQ), Technical Customer Service Quality (TCSQ) and overall Customer Satisfaction (CSAT) all tested negative for any significant gender effect.

Table 1 shows the descriptives for the customer service variables, FCSQ, TCSQ and CSAT for the sample. Overall, FCSQ had a mean of 5.69, TCSQ a mean of 5.46 and CSAT a mean of 5.66. All standard deviations were within an acceptable range.

Waiting Time

From the sample of 537, 100 customers had to wait to be served, while 437 did not have to wait to be served. The FCSQ of respondents who had to wait and those that did not have to wait to be served showed a significant difference between means, 5.90 (wait) and 5.65 (no wait) (t = 1.99, df = 535, p = .046). The means of FCSQ for the customers who had to wait was thus significantly higher (.25) than those customers who did not have to wait to be served. For TCSQ a similar situation was found with means of 5.86 (wait) and 5.59 (no wait) (t = 2.24, df = 535, p = .025). The situation was common for both FCSQ and TCSQ, indicating consistency by the respondents.

However, for customer satisfaction this effect was not found, as there was no significant difference (df = 522, t = 1.249, p = .212) between the means for customers who had to wait (mean = 5.58) and those who did not have to wait (mean = 5.39). Although significantly different statistically for service quality the size of effect for waiting time was small and did not have a significant effect on customer satisfaction. These are somewhat surprising results given that past research has demonstrated that customer satisfaction is significantly effected by waiting time. A study conducted by Lee (2004) indicated a significant 1.18 scale difference in customer satisfaction ratings between customers who waited for long periods of time and those that waited expected or shorter periods of time for service. Furthermore, researchers such as Tom and Lucey (1995), Davis and Vollmann (1990) and Davis and Heineke (1998) identified significant scale differences of 1.19, 1.6 and .18 respectively for ratings of customer satisfaction between waiting customers and non-waiting customers in

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTIVE STATISTICS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>FCSQ</td>
</tr>
<tr>
<td>TCSQ</td>
</tr>
<tr>
<td>CSAT</td>
</tr>
</tbody>
</table>

A histogram of CSAT is shown at figure 2, indicating that the customers perceived a full range of service satisfaction from very poor to very good, although very few respondents gave a customer satisfaction rating of less than four.
Various service settings. Previous research also highlights limited significant effects of waiting on customer service quality dimensions, with a study conducted by Lee (2004) identifying that only one of the five SERVQUAL dimensions (reliability) had a significant effect (with a scale differences of .43). The findings from this study suggest that further investigation is required as to the effect of waiting on service outcomes.

Pushiness

In the sample of 537, 31 customers perceived they were exposed to pushy service providers (16 different service providers), while 506 did not perceive they were exposed to such pushy sales tactics. The FCSQ of respondents who were exposed to pushy service providers and those that were not showed no difference between means, 5.68 (push) and 5.69 (no push) ($t = .081, df = 535, p = .935$). For TCSQ a similar situation was found with means of 5.77 (push) and 5.64 (no push) ($t = .686, df = 535, p = .493$). Thus, although there was no significant difference between respondents who were exposed to pushy service providers and those that were not, for both FCSQ and TCSQ there was an indication of consistency by the respondents.

The CSAT of respondents who were exposed to pushy service providers and those that were not showed a highly significant difference between means, 4.42 (push) and 5.62 (no push) ($t = 4.69, df = 522, p = .000$), indicating the degree of ‘damage’ done by pushiness to customer satisfaction.

For both wait and push situations there was no customer gender effect, although it should be noted that the sample size for the push situation was low ($n = 31$).

Hypotheses Testing

H1: There is a positive relationship between the level of acceptability of a waiting period to be served, as perceived by the customer, with functional service quality, and as moderated by the reason for the wait.

This hypothesis was tested using an ANCOVA test, as were hypothesis 2 to hypothesis 6. As shown in table 2, the relationship was highly and positively significant with an adjusted R^2 of .365, indicating a moderately strong relationship between the acceptability of the waiting time to the customer and their perception of FCSQ, and as moderated by the reason for the wait. Thus, hypothesis 1 was supported.

<table>
<thead>
<tr>
<th>Hypotheses</th>
<th>Dimension</th>
<th>df</th>
<th>F</th>
<th>p</th>
<th>Adj. R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>FCSQ</td>
<td>7/97</td>
<td>8.96</td>
<td>.000</td>
<td>.365</td>
</tr>
<tr>
<td>H2</td>
<td>TCSQ</td>
<td>7/97</td>
<td>14.22</td>
<td>.000</td>
<td>.488</td>
</tr>
<tr>
<td>H3</td>
<td>FCSQ</td>
<td>7/30</td>
<td>0.558</td>
<td>.782</td>
<td>NA</td>
</tr>
<tr>
<td>H4</td>
<td>TCSQ</td>
<td>7/30</td>
<td>.838</td>
<td>.567</td>
<td>NA</td>
</tr>
<tr>
<td>H5</td>
<td>CSAT</td>
<td>7/95</td>
<td>9.313</td>
<td>.000</td>
<td>.380</td>
</tr>
<tr>
<td>H6</td>
<td>CSAT</td>
<td>7/30</td>
<td>14.89</td>
<td>.000</td>
<td>.764</td>
</tr>
</tbody>
</table>
The test was rerun without the moderating variable (reason for wait) and the result was significant, but with a lower adjusted R^2 ($df = 1/99, F = 34.65, p = .000$, adjusted $R^2 = .254$). Thus, the inclusion of the moderating variable reason for wait improved the relationship between the acceptability of the wait to the customer and FCSQ.

H2: There is a positive relationship between the level of acceptability of a waiting period to be served, as perceived by the customer, with technical service quality, and as moderated by the reason for the wait.

As shown in table 2, the relationship was highly and positively significant with an adjusted R^2 of .488, indicating a moderately strong relationship between the acceptability of the waiting time to the customer and their perception of TCSQ, and as moderated by the reason for the wait. Thus, hypothesis 2 was supported.

The test was rerun without the moderating variable (reason for wait) and the result was significant, but with a lower adjusted R^2 ($df = 1/99, F = 32.32, p = .000$, adjusted $R^2 = .240$). Thus, the inclusion of the moderating variable reason for wait improved the relationship between the acceptability of the wait to the customer and TCSQ.

H3: There is a positive relationship between the level of acceptability of a service provider trying to push a customer into making a purchase, as perceived by the customer, with FCSQ, and as moderated by the persuasiveness of the service provider.

As shown in table 2, the relationship was not significant, indicating no relationship between the level of acceptability of a service provider trying to push a customer into making a purchase and the customers’ perception of FCSQ. Thus, hypothesis 3 was NOT supported.

H4: There is a positive relationship between the level of acceptability of a service provider trying to push a customer into making a purchase, as perceived by the customer, with TCSQ, and as moderated by the persuasiveness of the service provider.

As shown in table 2, the relationship was not significant, indicating no relationship between the level of acceptability of a service provider trying to push a customer into making a purchase and the customers’ perception of TCSQ. Thus, hypothesis four was NOT supported.

H5: There is a positive relationship between the level of acceptability of a waiting period to be served, as perceived by the customer, with customer satisfaction (CSAT), and as moderated by the reason for the wait.

As shown in table 2, the relationship was highly and positively significant with an adjusted R^2 of .380, indicating a highly significant relationship between the acceptability of the waiting time to the customer and their perception of CSAT, and as moderated by the reason for the wait. Thus, hypothesis 5 was supported.

The test was rerun without the moderating variable (reason for wait) and the result was significant, but with a lower adjusted R^2 ($df = 1/29, F = 10.23, p = .003$, adjusted $R^2 = .235$). Thus, the inclusion of the moderating variable reason for wait improved the relationship between the acceptability of the wait and CSAT.

H6: There is a positive relationship between the level of acceptability of a service provider trying to push a customer into making a purchase, as perceived by the customer, with CSAT, and as moderated by persuasiveness of the service provider.

As shown in table 2, the relationship was highly and positively significant with an adjusted R^2 of .764, indicating a very strong relationship between level of acceptability of a service provider trying to push a customer into making a purchase, as perceived by the customer, and their perception of CSAT, and as moderated by persuasiveness of the service provider. Thus, hypothesis 6 is supported.

It should be noted here, however, that this result is from a sample size of only 31 respondents.

The test was rerun without the moderating variable (reason for wait) and the result was significant, but with a lower adjusted R^2 ($df = 1/29, F = 10.23, p = .003$, adjusted $R^2 = .235$). Thus, the inclusion of the moderating variable persuasiveness of the service provider considerably improved the relationship between the acceptability of the service provider pushing for a sale and CSAT.

Testing the model

From the results of testing hypotheses 1, 2 and 5, the model at figure 1 was refined, as shown at figure 3, and tested relating the acceptability of the wait to the customer, coupled with the customers perceptions of FCSQ and TCSQ, and as moderated by the reason for the wait, for predicting CSAT.

The model shown at figure 3 was tested using a MANCOVA (Multivariate ANalysis of COVAriance) test, and the results are presented at table 3.

As shown in table 3, the independent (predictor) variable is very strongly positively related to FCSQ, TCSQ and Customer Satisfaction, and is moderated by the reason for the wait, with a model significance of $p = .000$, and an adjusted R^2 of .745. Thus, the acceptability of the wait to the customer, coupled with the customers’ perceptions of FCSQ and TCSQ provide a very strong positive relationship with CSAT, and as moderated by the reason for the wait. Unfortunately, the model relating pushiness and the acceptability of pushiness with CSAT could not be undertaken due to the small sample size.

DISCUSSION

Six particular contributions of main interest emerged from the research:

(1) The effect of waiting time on customers’ perceptions of FCSQ was positively related to the acceptability of the wait to the customer and moderated by the reason for the wait. Thus, if customers were willing to wait without it being unacceptable to them (for example, they were not in a hurry) then the wait did not adversely affect their perceptions of FCSQ dimensions. If the reason for the wait was due to there being insufficient staff available, as opposed to the inefficient operations of the staff, then customers’ perceptions of FCSQ were further improved. A similar relationship was found for TCSQ. The strength of the relationships found was high in both cases (adjusted $R^2 = .365$ for FCSQ and adjusted $R^2 = .488$ for TCSQ), indicating the importance of the effect of the
acceptability of the wait to the customer and the reason for the wait;

FIGURE 3
MODEL PREDICTING CUSTOMER SATISFACTION

TABLE 3
MODEL RESULTS FOR PREDICTING CUSTOMER SATISFACTION

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>341.594</td>
<td>49</td>
<td>6.971</td>
<td>6.672</td>
<td>.000</td>
</tr>
<tr>
<td>Intercept</td>
<td>104.886</td>
<td>1</td>
<td>104.886</td>
<td>100.386</td>
<td>.000</td>
</tr>
<tr>
<td>Reason for wait</td>
<td>121.395</td>
<td>10</td>
<td>12.139</td>
<td>11.619</td>
<td>.000</td>
</tr>
<tr>
<td>TCSQ</td>
<td>29.936</td>
<td>13</td>
<td>2.303</td>
<td>2.204</td>
<td>.025</td>
</tr>
<tr>
<td>FCSQ</td>
<td>44.892</td>
<td>19</td>
<td>2.363</td>
<td>2.261</td>
<td>.012</td>
</tr>
<tr>
<td>Acceptability of wait to customer</td>
<td>20.952</td>
<td>5</td>
<td>4.190</td>
<td>4.011</td>
<td>.004</td>
</tr>
<tr>
<td>Error</td>
<td>48.062</td>
<td>46</td>
<td>1.045</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3131.000</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>389.656</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: R Squared = .877 (Adjusted R Squared = .745)

(2) The effect of waiting time on customers’ perceptions of customer satisfaction was positively related to the acceptability of the wait to the customer and moderated by the reason for the wait. Thus, if customers were willing to wait without it being unacceptable to them (for example, they were not in a hurry) then the wait did not adversely affect their perceptions of customer satisfaction.
If the reason for the wait was due to there being insufficient staff available, as opposed to the inefficient operations of the staff, then customers’ perceptions of customer satisfaction were further improved. The strength of the relationship (adjusted R² = .380) found was high, indicating the importance of the effect of the acceptability of the wait to the customer and the reason for the wait on customer satisfaction.

(3) The effect of acceptability of pushiness and the moderating variable of the persuasiveness of that pushiness did not relate to either FCSQ or TCSQ;

(4) The effect of pushiness on customers’ perceptions of customer satisfaction was positively related to the acceptability of the pushiness to the customer and moderated by the persuasiveness of the pushiness. Thus, if customers found the pushiness acceptable to them then it did not adversely affect their perceptions of customer satisfaction. As the persuasiveness of the service provider increased then customers’ perceptions of customer satisfaction were further improved. The strength of the relationship (adjusted R² = .764) found was very high, indicating the importance of the effect of the acceptability of the pushiness to the customer and persuasiveness on customer satisfaction. It should be noted however, that this finding for pushiness was based on a sample of only 30 respondents and thus needs further support from a replicated study;

5) The customer satisfaction of respondents who were exposed to a pushy service provider and those that were not showed a highly significant difference between means, 4.42 (push) and 5.62 (no push) (t = 4.69, df = 522, p = .000), indicating the degree of ‘damage’ done by pushiness to customer satisfaction. This is an important issue that theorists and practitioners should be fully aware of, and ensure that their staff are also fully aware of this effect;

6) The model in figure 3 provided a very strong relationship indicating how Functional and Technical CSQ and customer satisfaction are affected by the acceptability of the wait and moderated by the reason for the wait (adjusted R² = .745).

In conclusion, this study shows clearly that waiting time and pushiness do have different effects on customers’ perceptions of Functional CSQ, Technical CSQ and customer satisfaction. Further research is required on the pushiness issue as these results clearly indicate the negative impact of such sales actions. The results show that customers are generally more tolerant of waiting time, especially if the reason is due to staff being overloaded, rather than inefficient operations. It is recognised however, that this study was limited by the sample size of pushiness sales actions, indicating that such tactics are relatively uncommon in general retail environments. A specific simulation study aimed at pushiness in order to acquire a larger sample is clearly required. Additionally, it would useful to undertake similar research in other service environments (for example, banking and finance organisations, hospitality, healthcare, transport services) to investigate how the effect of waiting and pushiness vary between consumer environments. Further studies could also investigate the effect of waiting and pushiness on other outcome variables, such as, image of a service provider, repeat purchase intentions, relationship development and word-of-mouth activities.

REFERENCES

