A Preliminary Study on Common Variable Selection Strategy in Data Fusion

ABSTRACT - Data fusion has been known as a major approach for estimating missing values in large databases. Although selecting common variables is one of the important factors in data fusion, few studies have systematically investigated the various methods available. In this study three strategies are considered for selecting a set of common variables and their results are compared using a Monte Carlo simulation. Selection strategies by variance and by weighted importance perform better than random selection. The results also show that, in locating a donor, the Euclidean distance-based selection outperforms the inter-respondent correlation-based selection. Directions for future research are also discussed.


Jonathan S. Kim, Seung Baek, and Sungbin Cho (2004) ,"A Preliminary Study on Common Variable Selection Strategy in Data Fusion", in NA - Advances in Consumer Research Volume 31, eds. Barbara E. Kahn and Mary Frances Luce, Valdosta, GA : Association for Consumer Research, Pages: 716-720.


Jonathan S. Kim, Hanyang University
Seung Baek, Hanyang University
Sungbin Cho, Konkuk University (Corresponding author)


NA - Advances in Consumer Research Volume 31 | 2004

Share Proceeding

Featured papers

See More


D9. Consumption Closure as a Driver of Positive Word of Mouth

Christina Saenger, Youngstown State University
Veronica Thomas, Towson University

Read More


Family Consumption Experiences Across Generations

Tandy Chalmers Thomas, Queens University, Canada
Linda L Price, University of Oregon, USA

Read More


With or Without You: When Second Person Pronouns Engage Listeners

Grant M Packard, Wilfrid Laurier University, Canada
Jonah Berger, University of Pennsylvania, USA

Read More

Engage with Us

Becoming an Association for Consumer Research member is simple. Membership in ACR is relatively inexpensive, but brings significant benefits to its members.