Algorithm Attraction Versus Aversion: the Role of the Perceived Self-Efficacy of the Decision Maker

Nowadays algorithms are used to generate recommendations in numerous areas, including ones that are pure matter of taste. Across four studies, we demonstrate that consumers value the same recommendation differently depending on the framing of its source—an algorithm versus human expert—and their own perceived level of self-efficacy.



Citation:

Gizem Yalcin, Anne-Kathrin Klesse, and Darren Dahl (2018) ,"Algorithm Attraction Versus Aversion: the Role of the Perceived Self-Efficacy of the Decision Maker", in NA - Advances in Consumer Research Volume 46, eds. Andrew Gershoff, Robert Kozinets, and Tiffany White, Duluth, MN : Association for Consumer Research, Pages: 935-935.

Authors

Gizem Yalcin, Erasmus University Rotterdam, The Netherlands
Anne-Kathrin Klesse, Erasmus University Rotterdam, The Netherlands
Darren Dahl, University of British Columbia, Canada



Volume

NA - Advances in Consumer Research Volume 46 | 2018



Share Proceeding

Featured papers

See More

Featured

O2. The Streaking Star Effect: Why People Want Individual Winning Streaks to Continue More than Group Streaks

Jesse Walker, Cornell University, USA
Thomas Gilovich, Cornell University, USA

Read More

Featured

R5. Autonomy or Enjoyment? The Contingent Nature of Brand Ritual

Yaxuan Ran, Zhongnan University of Economics and Law
Echo Wen Wan, University of Hong Kong

Read More

Featured

Personal Budgeting: Does It Work?

Christina Kan, Texas A&M University, USA
Philip M. Fernbach, University of Colorado, USA
John Lynch, University of Colorado, USA

Read More

Engage with Us

Becoming an Association for Consumer Research member is simple. Membership in ACR is relatively inexpensive, but brings significant benefits to its members.