Robo-Advising: Algorithm Appreciation

Counter to the widespread conclusion of algorithm aversion, our results suggest that people are willing to rely on algorithmic advice under circumstances that apply to many decisions. They suggest moderators to algorithm aversion and contribute to “theory of machine,” which examines lay beliefs about how algorithmic and human judgment differ.



Citation:

Jennifer Logg, Julia Minson, and Don Moore (2018) ,"Robo-Advising: Algorithm Appreciation", in NA - Advances in Consumer Research Volume 46, eds. Andrew Gershoff, Robert Kozinets, and Tiffany White, Duluth, MN : Association for Consumer Research, Pages: 63-67.

Authors

Jennifer Logg, Harvard Business School, USA
Julia Minson, Harvard Business School, USA
Don Moore, University of California Berkeley, USA



Volume

NA - Advances in Consumer Research Volume 46 | 2018



Share Proceeding

Featured papers

See More

Featured

Consumers’ Attitudes Towards Their Rights and Responsibilities in the Sharing Economy: An Ideological Perspective

Marylouise Caldwell, University of Sydney, Australia
Steve Elliot, University of Sydney, Australia
Paul Henry, University of Sydney, Australia
Marcus O'Connor, University of Sydney, Australia

Read More

Featured

Cultivating Collaboration and Value Cocreation in Consumption Journeys

Melissa Archpru Akaka, University of Denver
Hope Schau, University of Arizona, USA

Read More

Featured

Attentional Breadth Affects In-store Exploration and Unplanned Purchasing

Mathias Clemens Streicher, University of Innsbruck, Austria
Zachary Estes, Bocconi University, Italy
Oliver B. Büttner, University of Duisburg-Essen

Read More

Engage with Us

Becoming an Association for Consumer Research member is simple. Membership in ACR is relatively inexpensive, but brings significant benefits to its members.