Robo-Advising: Algorithm Appreciation

Counter to the widespread conclusion of algorithm aversion, our results suggest that people are willing to rely on algorithmic advice under circumstances that apply to many decisions. They suggest moderators to algorithm aversion and contribute to “theory of machine,” which examines lay beliefs about how algorithmic and human judgment differ.



Citation:

Jennifer Logg, Julia Minson, and Don Moore (2018) ,"Robo-Advising: Algorithm Appreciation", in NA - Advances in Consumer Research Volume 46, eds. Andrew Gershoff, Robert Kozinets, and Tiffany White, Duluth, MN : Association for Consumer Research, Pages: 63-67.

Authors

Jennifer Logg, Harvard Business School, USA
Julia Minson, Harvard Business School, USA
Don Moore, University of California Berkeley, USA



Volume

NA - Advances in Consumer Research Volume 46 | 2018



Share Proceeding

Featured papers

See More

Featured

M7. The Mixed Effects of Nostalgia on Consumer Switching Behavior

Zhongqiang (Tak) Huang, University of Hong Kong
Xun (Irene) Huang, Nanyang Technological University, Singapore
Yuwei Jiang, Hong Kong Polytechic University

Read More

Featured

When Consumers Choose for Others, Their Preferences Diverge from Their Own Salient Goals

Olya Bullard, University of Winnipeg

Read More

Featured

E7. Pronouns in Fundraising Appeals – The Impact of I vs. S/He on Donations

Amir Sepehri, Western University, Canada
Rod Duclos, Western University, Canada
Hamid Elahi, Western University, Canada

Read More

Engage with Us

Becoming an Association for Consumer Research member is simple. Membership in ACR is relatively inexpensive, but brings significant benefits to its members.