Birds of a Feather Feel Together: Emotional Ability Similarity in Consumer Interactions
B Blair Kidwell, University of North Texas, USA
Chris Blocker, Colorado State University, USA
Virginie Kidwell, University of North Texas, USA
Erick Mas, University of North Texas, USA

The authors examine emotional ability similarity (EAS) to explain key outcomes in consumer interactions beyond the effects of traditional variables in the similarity-attraction paradigm. Three studies examine how and why similar abilities to use emotional information promotes relational success and joint consumer decisions through creating easy and comfortable interactions.

[to cite]:

[url]:
http://www.acrwebsite.org/volumes/1023875/volumes/v45/NA-45

[copyright notice]:
This work is copyrighted by The Association for Consumer Research. For permission to copy or use this work in whole or in part, please contact the Copyright Clearance Center at http://www.copyright.com/.
Birds of a Feather Feel Together:

Emotional Ability Similarity in Consumer Interactions

Blair Kidwell, University of North Texas, USA
Christopher Blocker, Colorado State University, USA
Virginie Lopez Kidwell, University of North Texas, USA
Erick Mas, University of North Texas, USA

EXTENDED ABSTRACT

Interpersonal similarity is a fundamental contributor to exchange relationships (Palmatier et al. 2006), and its relevance for relationship development is one of the most widely accepted finding in social science (Mackinnon, Jordan, and Wilson 2011). Yet, despite a large body of research, scholars debate the precise nature of interpersonal similarity and the underlying mechanisms that drive its relational effects (Tidwell, Eastwick, and Finkel 2013). For decades, scholars have assumed that similarity of attitudes, beliefs, and other characteristics enhance mutual liking over time (Davis and Rusbult 2001). However, a meta-analysis of 313 studies finds that this link actually weakens and even disappears for partners with increasing interaction (Montoya, Horton, and Kirchner 2008). Thus, researchers have called for investigation into other potentially more powerful relationship facilitators such as interaction patterns and conversational flow (Koudenburg, Gordijn, and Postmes 2014; Montoya et al. 2008).

We take these insights as a point of departure and investigate a new form of similarity—similar emotional ability between two people—which reflects a deeper level of interpersonal similarity. The way in which people use and communicate emotions when interacting with others may play a crucial role in how they form relationships and make decisions. This exchange of emotional information potentially constitutes a powerful facilitator of consumer interactions, beyond the effects of traditional physical and attitudinal similarity.

Emotional ability (EA), commonly called emotional intelligence, reflects an individual’s ability to reason about and apply emotional knowledge when achieving a desired outcome (Mayer and Salovey 1997). When interacting with others, EA determines how people communicate emotional information to their partners. These normative expectations of the appropriateness of how people use their emotions are referred to as “display rules” (Ekman 1982), “feeling” rules (Hochschild 1979), or more recently “emotion norms” (Ekman, Friesen, and Ellsworth 2013; Heise and Calhan 1995). Research suggests that two individuals with similar EA will likely use their emotions in similar ways. As such, EA should allow people to align their emotions, resulting in pleasant and effortless interactions. In contrast, those who use emotions differently are unlikely to align their emotions and thus, may have considerably more difficulty interacting. Beyond the established roles of attitudinal and physical similarity, we suggest that EA similarity may offer a new path for understanding consumer interactions and why they flourish or fail to develop.

Emotional Ability Similarity

We define EA similarity as an intuitive deep-level interpersonal ability to process emotional information in a congruent way based on shared emotion norms. Just as attitudinal similarity is based on congruent cognitive information that is recognized and understood by another (Brockner and Swap 1976), EA similarity is based on congruent emotional information that is exchanged allowing the subtle but powerful emotions of others to be recognized and understood in the same way by the receiver.

Research indicates that emotion norms can vary widely and are based on accumulated knowledge and past experiences using emotions when interacting with others (Miller and Prentice 1996). The development of emotional norms is understudied but central to emotional ability (Mayer and Geher 1996; Salovey and Grewal 2005). Druskat and Wolff (2001) found that the EA of group members corresponded to the emotional norms used within that group. For example, higher EA groups used more care and attention toward their partners and displayed better listening skills when communicating, whereas, low EA groups tended to use lengthy discussions to solve problems and then collected and combined perspectives in a mechanical way. George (2000) further indicated that when emotional norms are reciprocated they evoke emotions “stemming from a feeling of ‘rightness’ between individuals” (p.1045).

In line with this research, we suggest that different emotional norms are adhered to at varying levels of EA. Since high EA individuals are more effective at processing emotions, interactions at shared high levels of EA are likely to exhibit greater emotional expression and use of emotional information (Forbes and Jackson 1980; Lyons and Schneider 2005; Mayer and Geher 1996). Individuals interacting who share compatible emotional norms are likely feel significantly more connected, understood and validated.

In contrast, since low EA individuals are less effective at using emotions, interactions at shared low levels of EA likely rely less on emotions and thus are less expressive with their emotions in the interaction (Mayer and Geher 1996). Despite their low ability to use emotions effectively, individuals interacting who share compatible emotional norms are likely feel significantly more connected, understood and validated. Thus, as indicated in our conceptual model (figure 1), we predict:

Hypothesis 1: Dyads with EA similarity will exhibit greater relational outcomes than non-similar dyads, beyond the effects of conventionally measured surface-level physical and deep-level attitudinal similarity.

Effortless Communication Underlying Emotional Ability Similarity

If EA similarity leads to relational success in market interactions, what underlying process facilitates these effects? We suggest that dyads with EA similarity, by virtue of compatible emotional norms between members, are likely to experience **effortless interactions.** By easily recognizing and interpreting emotional information in their partner, EA similarity fosters a conversational flow that is smooth and comfortable. Effortless communication reflects the reduced mental energy needed to effectively interact, particularly as each person draws on limited resources to respond, seek goals, and make choices (Baumeister 2002). Furthermore, effortless communication can produce a feeling of genuineness and desirability for the other person through mutual intimacy and meaningful information (Cesario and Higgins 2008). In short, communication requires less effort when both individuals share compatible emotion norms,
thereby promoting enduring exchange relationships. Therefore, we predict:

Hypothesis 2: Effortless communication will mediate the relationship between EA similarity and relational success, such that dyads with EA similarity will exhibit a less mental energy expended toward the interaction.

EA Similarity and Decision Quality

We extend our conceptualization to also include joint decision tasks made by consumers, and thus, advance the literature on social influence (Jiang et al. 2010; White and Argo 2011). We expect that partners with similar EA are likely to make higher quality joint decisions.

In contrast, non-similar dyads are likely to feel confused, misunderstood, and ignored in the decision process, ultimately disrupting meaningful communication and impeding the quality of their joint decisions. As individuals attempt to mentally align disparate perceptions and uses of emotional information with their exchange partner, they will likely be less able to isolate and incorporate relevant emotions and make informed decisions. Thus, we hypothesize:

Hypothesis 3: Dyads with EA similarity will make higher quality joint consumer decisions than non-similar dyads.

Study 1 – Field Study of Customer-Salesperson Relationships

The goal in study 1 was to demonstrate the effect of EA similarity on actual customer-salesperson relationships. Customers and salespeople with EA similarity (i.e., dyads with similar EA scores) are anticipated to experience greater relational success over time. Three indicators of exchange relationship success are loyalty, satisfaction, and positive word of mouth (WOM) communication (Crosby et al. 1990; Yim et al. 2008). To test our hypothesis, we focus on the extended process of home buying and capture dyadic responses from both customers and their real estate agent over time (1 year).

Sample and Procedure. We collected dyadic data by working with the salespeople of a Fortune 1000 real estate firm and their customers. First, with the help of senior management, we emailed 1,049 salespeople requesting their participation in a survey. The survey instructed salespeople to identify their last customer they worked with. Next, customers were notified and asked to respond to questions pertaining to the salesperson. We received 172 responses within two weeks for a response rate of 49%, resulting in 69 completed surveys and, thus, usable dyads for our longitudinal analyses.

Results

Test of Hypothesis 1. Using OLS regression (N= 69 dyads), EA similarity significantly predicted consumer loyalty (b = -.53, t = -3.40, p < .01; model 1), customer satisfaction (b = -.53, t = -3.32, p < .01; model 2), and positive word of mouth (b = -.38, t = -1.96, p < .05; model 3), all above and beyond our set of controls. Negative coefficients indicate that dyads with lower differences among their EA scores (higher EA similarity) were more likely to report higher quality consumer relational outcomes. Taken together, these results offer support for H1.

Planned Contrasts for Similar and Non-similar EA Dyads. Additionally, we trichotomized each person’s EA score (M = 100, SD = 10) into a high (>110), moderate (90-110), and low (<90), to compare how similar EA dyads (high-high, moderate-moderate, low-low) and non-similar dyads (low-moderate, low-high, moderate-high) influence relational success. Loyalty to the salesperson was used as our focal outcome to examine how unique levels of EA influence relational success.

As a conservative test, the highest mean for non-similar EA dyads (mod-high; 2.83 average loyalty) is significantly different (A1.38, t = -3.29, p < .01) from the lowest mean for similar EA dyads (low-low; 4.21 average loyalty). This pattern held across all outcomes.

Study 2 – Sales Interaction Study

In study 2, we examine an underlying mechanism for why EA similarity promotes relational success. Specifically, we investigate whether similar EA dyads experience effortless interactions (less exertion during interactions). We used a mock sales interaction design which is comparable to those used by scholars examining interpersonal similarity.

Sample and Procedures. The sample included 104 respondents (ages 18-22) who answered initial EA questions, and then were randomly assigned role as a salesperson or customer. The salesperson was instructed to assist the customer with their purchase decision of a digital camera. After the interaction, lasting 10 minutes, participants returned to their cubical and filled out survey items about the other person and their interaction. They then completed items related to similarity, attractiveness, friendliness, familiarity, and relational success.

Next, respondents were thanked and asked to complete a brief unrelated study. Here we assessed the mental exertion that occurred for them during the interaction by evaluating their depletion levels via persistence on an anagram task. We recorded the total number of completed words from the total number of anagrams for each respondent, after checking they were English words with at least 3 letters, per task instructions.

Results

Test of Hypothesis 2. Mediation analyses were conducted using the PROCESS macro (Preacher and Hayes 2008). Similar EA dyads completed significantly more anagrams (b = -29, t = -2.82 p < .01) beyond our set of controls. Furthermore, dyads with a higher number of completed anagrams experienced significantly more relational success (i.e., harmonious interactions; b = .24, t = 3.10, p < .01) beyond our set of controls. Additionally, a test of the mediation found that the 95% confidence interval of the indirect effect (Zhao et al. 2010) from EA similarity onto relational success through resource depletion was significant as it did not cross 0 (a * b = -1.96, p < .01, CI: -.02 to - .01) while the direct effect was non-significant (c = .005, t = .87, p > .10). These results suggest indirect-only mediation, in support of H2 and our conceptual model.

Planned Contrast by Similar and Non-similar EA Dyads. Similar to study 1, we trichotomized each person’s EA into a high (>110), moderate (90-110), and low (<90), to compare how similar EA dyads (high-high, moderate-moderate, low-low) and non-similar dyads (low-moderate, low-high, moderate-high) score relative to effortless interaction (dyadic average total number of anagrams completed). Findings indicated a statistically significant difference between groups (F(4,100) = 4.37, p = .003).

Furthermore, as a conservative comparison test of unique EA levels, the highest mean for non-similar EA dyads (mod-high; 18.22 total completed anagrams) was significantly different (A10.52, t = 2.25, p < .05) from the lowest mean for similar EA dyads (low-low; 28.8 total completed anagrams). This provides further evidence that similar EA dyads were significantly less depleted than non-similar
dyads and thus experienced less effortful interactions, in support of H2.

Study 3 – Dyadic Decision Quality

The goal of study 3 was to extend the effects of EA similarity to a decision-making task in which members of a dyad must solve a food choice task by working together. Thus, we expect dyads with similar levels of EA to make higher quality joint consumption choices.

Sample and Procedures. Participants were 236 undergraduate business students who initially completed an online survey assessing their EA. Upon arrival, participants were randomly assigned to one of 118 dyads, including 31 male–male groups, 36 female–female groups, and 51 male–female groups. Participants were instructed to work together to solve a problem that student organizations face when planning events: menu selection for a dinner party. Various healthy and unhealthy options were available.

The decision quality outcome was measured by the total amount of calories that each dyad selected to be consumed through the menu selections. Total calories were calculated based on quantities cross-referenced from nutritional guides (e.g., www.calorieking.com) that should be minimized to maintain a healthy diet. This measure is similar to measures used in recent studies on cognitive biases in food choice decision-making (Chandon and Wansink 2007).

Results

Test of Hypothesis 3. OLS regressions were used to test hypothesis 3. Results indicated significant differences (b = .36, t = 4.02 p < .001) and a change in R square (ΔR-square = .12, p = .000). Dyads with less EA similarity (higher difference scores) selected meals with significantly higher calories. Thus, similar EA dyads made superior joint decisions relative to non-similar dyads in support of H3.

Planned Contrasts by Similar and Non-similar EA Dyads. Similar to studies 1 and 2, we trichotomized each person’s EA into high (>90), moderate (90-110), and low (<90), to compare how similar EA dyads (high-high, moderate-moderate, low-low) and non-similar dyads (low-moderate, low-high, moderate-high) performed on a joint decision task (total calories per dyad). Findings indicated a significant difference between groups (F(4,118) = 7.03, p = .000). Furthermore, as a conservative comparison test of unique EA levels, the lowest mean for non-similar EA dyads (mod-high; 5,396 total calories) was significantly different (Δ-1427, t=2.03, p<.05) from the highest mean for similar EA dyads (mod-mod; 3,969 calories).

General Discussion

EA similarity reflects a deep-level of interpersonal similarity, beyond physical features and personal characterstics, and captures the ways that individuals jointly process emotional information and communicate on the same wavelength. Results from three studies reveal that EA similarity enables individuals to communicate with ease, which in turn, fosters easy and effortless interactions, and thus greater relational success that endures past initial interactions.

Overall, our findings challenge the received notion that higher EA is uniformly likely to create ideal outcomes for interacting with others. Rather, results indicate that people with similar EA communicate on a similar wavelength, “get along” better, make better joint decisions, and are more likely to form enduring relationships.

Notably, we find that EA similarity accounts for outcomes beyond commonly measured forms of similarity, attractiveness, familiarity, and friendliness. Collectively, these three studies provide evidence that birds of a feather not only flock together, but more precisely, feel together, and that consumer interactions must consider, at least in part, the role of EA similarity.

REFERENCES

