I’Ve Got the Power: Investigating Dynamic Brand Logos

Stacey Baxter, University of Newcastle, Australia
Jasmina Ilicic, Monash University, Australia

We find dynamic brand logos (motion and force) are more effective than kinematic (motion only) brand logos in increasing brand related attitudinal and behavioral judgments, through perceived brand energy. However, when a thrust force (propelling force) is depicted in a brand logo, the brand energy effect is attenuated.

[to cite]:

[url]:
http://www.acrwebsite.org/volumes/1023653/volumes/v45/NA-45

[copyright notice]:
This work is copyrighted by The Association for Consumer Research. For permission to copy or use this work in whole or in part, please contact the Copyright Clearance Center at http://www.copyright.com/.
I’ve Got the Power: Investigating Dynamic Brand Logos
Stacey Baxter, University of Newcastle, Australia
Jasmina Ilicic, Monash University, Australia

EXTENDED ABSTRACT
Henderson and Cote (1998) highlight the importance of active brand logo designs (those that give the impression of motion) for increasing consumer interest. One approach to creating an active brand logo is through the inclusion of a human figure in motion, for example, Johnnie Walker (walking figure), Interflora (running figure), or Air Jordan (jumping figure). Drawing on Newtonian principles in physics, we employ a ‘dynamics’ in classical human mechanics lens to examine active brand logo effects through the causes of motion in human movement (i.e., force). Scientific research has demonstrated that when a force is applied in the opposite direction of a human figure in motion (e.g., gravitational force when running up a hill) the figure is exerting greater work (e.g., Zatsiorsky 2002).

Cues to hard work align with perceptions of brand competence (Aaker 1997), which increases brand attitude and behavioral intentions (Eisend and Stokburger-Sauer 2013). As such, we propose that a dynamic brand logo featuring human work (motion along with a force), results in more positive brand-based attitudes and behavioral judgments than a kinematic logo featuring less work (motion without a force applied).

Study 1 demonstrates that a dynamic brand logo (i.e., greater work exerted due to the inclusion of force) results in more positive brand attitude and purchase intention than a kinematic brand logo (i.e., less work exerted in a logo with only motion and no force applied). In Study 2, we demonstrate that the indirect effect of brand dynamism on brand attitude is explained through our developed brand energy construct, not by brand engagement, which previous research suggests. We also empirically reveal the bounds of our brand energy effect, reducing perceptions of the brand’s energy, and subsequently diluting brand attitudes and purchase intentions (Eisend and Stokburger-Sauer 2013). As such, we propose a brand work-energy effect on consumer attitudinal and behavioral judgments. We expect that a dynamic brand logo phenomenon manifests due to a brand work-energy effect, whereby dynamic brand logos influence attitudinal and behavioral judgments via perceptions of brand energy.

Active Dynamic Brand Logos
Active brand logo designs are those that “give the impression of motion” (Henderson and Cote 1998, p. 17). To date, only one study has examined active brand logos and their effects on brand engagement and attitude (Cian et al. 2014). Cian’s et al. (2014) study focuses only on the use of motion in brand logos, which they term dynamic. However, we argue that their study examines brand logos from a kinematic perspective. Kinematics is the study of motion without regard for the cause (Beggs 1983). We, on the other hand, take the physics perspective of dynamics, which is the study of forces that produce motion (Beggs 1983).

When force is applied to a human in motion, both the force and the human are doing work (Zatsiorsky 2002). A human moving against a force expends greater work (negative force; Zatsiorsky 2002). For example, when walking uphill the increasing incline and negative gravitational push force results in positive work on behalf of the body in motion (as they must compensate by doing the work themselves; Margaria 1968). We argue that a dynamic brand logo (depicting a human figure in motion), with a force applied in the opposite direction to the human figure in motion (negative force), creates the perception of greater work, whereas a kinematic brand logo, with no force applied, creates less perceived work. Based on research that finds evidence to suggest that hard working brands are perceived to be reliable and competent (Aaker 1997), and result in positive attitude towards the brand and willingness to buy the brand (Aaker, Vohs, and McGilner 2010; Eisend and Stokburger-Sauer 2013), we suggest that dynamic brand logos (negative force) will enhance consumer attitudinal and behavioral judgments. Formally, our hypothesis is:

Hypothesis 1: Dynamic (kinematic) brand logos will result in heightened (reduced) a) brand attitude and b) purchase intention.

Brand Work-Energy
According to the work-energy principle, the work done by a force on a particle equals the change in the particle’s kinetic energy (Young and Freedman 2008). When walking uphill, the negative gravitational push force results in the body undertaking greater work, which results in an increase in the energy level of the body in order to accomplish the work (Margaria 1968). As such, we argue that the dynamic brand logo phenomenon manifests due to a brand work-energy effect, whereby dynamic brand logos influence attitudinal and behavioral judgments via perceptions of brand energy.

Brand Energy and Brand Engagement
Research demonstrates that active brand logos result in more positive brand attitudes due to brand engagement, whereby motion in the logo encourages consumers to play with the image in their minds (Cian et al. 2014). We argue, however, that the differential effect of kinematic versus dynamic brand logos on attitudinal and behavioral judgments is not driven by brand engagement. Both kinematic and dynamic brand logos include movement and should both equally result in brand engagement. Conversely, we propose a brand work-energy effect, whereby perceptions of brand energy result from active dynamic brand logos, which include force and, as a result, greater work, resulting in more positive brand attitudes and purchase intentions. We expect that the effect of dynamic brand logos on attitudinal and behavioral judgments will manifest through brand energy not via brand engagement. As such, the following hypothesis is proposed:

Hypothesis 2: The indirect effect of dynamic brand logos on a) brand attitude and b) purchase intention will manifest via brand energy not brand engagement.

Brand Dynamism and Force
Whilst a force applied in the opposite direction of motion results in positive work and, subsequently, greater energy exerted, a force applied in the direction of motion results in negative work and less energy expended (Margaria 1968). For example, when a thrust force (e.g., air propulsion) is applied in the direction of motion, the force assists human motion and, therefore, results in less work exerted by the human. We argue that a brand logo depicting a thrust force (air propulsion) and drag force (air resistance) will have differential effects on consumer attitudinal and behavioral judgments. We expect that a thrust force, which signifies less work, will result in attenuation of the brand work-energy effect, reducing perceptions of the brand’s energy, and subsequently diluting brand attitudes and purchase intentions. We, therefore, propose:
Hypothesis 3: Thrust (drag) dynamic brand logos will result in reduced (heightened) brand energy and subsequent a) brand attitude and b) purchase intention.

Study 1

A sample of two hundred members of the Australian general public (90 male, 110 female; \(M_{\text{Age}} = 42.88, SD_{\text{Age}} = 16.07 \)) were recruited through an Australian research panel company. A between subjects design was employed, with participants randomly allocated to one of the two experimental conditions: kinematic logo (less gravitational force, \(n = 100 \)) or dynamic logo (greater gravitational force, \(n = 100 \)).

First, participants were shown a logo for the fictitious brand, Onik. The logo was presented either horizontally (kinematic; 0° inclination) or inclined (dynamic; 45° inclination). Next, employing measures drawn from Mitchell and Olsen (1981), participants were asked to rate their attitude towards the brand (Cronbach \(\alpha = .937 \)) and their intention to purchase the brand (Cronbach \(\alpha = .861 \)). Finally, participants were asked to report the degree of work ("How much work is shown in the logo for this company?" none at all/a lot) and motion ("How much motion is shown in the logo for this company?" none at all/a lot) depicted in the logo, and report simple demographic information.

Manipulation Check

A significant main effect was observed for brand logo work (\(F (1, 202) = 22.86, p < .001, \eta^2 = .102 \)), however, not brand logo motion (\(F (1, 202) = 1.26, p > .264, \eta^2 = .006 \)). As intended, the brand logo depicting tension force was perceived as portraying significantly more work (\(M_{\text{work}} = 4.68, SD_{\text{work}} = 1.51 \)) when compared to the no tension force brand logo (\(M_{\text{work}} = 3.68, SD_{\text{work}} = 1.48 \)), with no difference in perceived motion observed (tension force: \(M_{\text{motion}} = 4.12, SD_{\text{motion}} = 1.42 \); no tension force: \(M_{\text{motion}} = 4.40, SD_{\text{motion}} = 1.13 \)).

Results

Mediating Role of Brand Engagement and Brand Energy on Attitude towards the Brand and Purchase Intention.

Results (\(n = 10000 \), Model 4, Preacher et al. 2000) show that brand logo dynamism is a positive and significant predictor of brand energy, yet not brand engagement. Results demonstrate that exposure to a dynamic (kinematic) brand logo results in stronger (weaker) perceptions of brand energy. Further, both brand energy and brand engagement are positive predictors of attitude towards the brand and purchase intention. The 95% bootstrapped confidence interval for the indirect effect of brand logo dynamism on both attitude towards the brand (\(\beta = .19, 95\% \text{ CI} = .07 \text{ to } .39 \)) and purchase intention (\(\beta = .12, 95\% \text{ CI} = .01 \text{ to } .30 \)) through brand energy did not include zero, demonstrating a significant mediating effect. A significant indirect effect was not observed via brand engagement (brand attitude: \(\beta = .09, 95\% \text{ CI} = -.06 \text{ to } .28 \); purchase intention: \(\beta = .08, 95\% \text{ CI} = -.05 \text{ to } .25 \)), supporting Hypothesis 2.

Study 3

A sample of two hundred and fifteen members of the Australian general public (101 male, 114 female; \(M_{\text{Age}} = 42.27, SD_{\text{Age}} = 15.18 \)) were recruited through an Australian research panel company. A between subjects design was employed, with participants randomly allocated to one of the two experimental conditions: dynamic thrust logo (propulsion air force, \(n = 107 \)) or dynamic drag logo (air resistance force, \(n = 108 \)).

First, participants were shown a dynamic logo for the fictitious brand, Videx. The brand logos included a figure and the depiction of air blowing either behind the figure (thrust force) or towards the figure (drag force). Participants then rated their attitude towards the brand (Cronbach \(\alpha = .955 \)), their intention to purchase the brand (Cronbach \(\alpha = .916 \)) and the perceived energy of the brand (Cronbach \(\alpha = .917 \)). Finally, participants were asked to report the degree of motion and work depicted in the logo, and report simple demographic information.

Manipulation Check

A significant main effect was not observed for brand logo work (\(F (1, 213) = 2.00, p = .158, \eta^2 = .009 \); thrust: \(M_{\text{work}} = 4.93, SD_{\text{work}} = 1.45 \); drag: \(M_{\text{work}} = 4.69, SD_{\text{work}} = 1.00 \)). As intended, a significant main effect was observed for brand logo motion (\(F (1, 213) = 41.17, p < .001, \eta^2 = .162 \)). Results show that the dynamic drag logo was perceived as portraying significantly more work (\(M_{\text{work}} = 4.63, SD_{\text{work}} = 1.17 \)) when compared to the dynamic thrust brand logo (\(M_{\text{work}} = 3.50, SD_{\text{work}} = 1.40 \)).
Results

Mediating Role of Brand Engagement and Brand Energy on Attitude towards the Brand and Purchase Intention

Results (n = 10000, Model 4, Preacher et al. 2007) show that brand logo dynamism is a positive and significant predictor of brand energy and brand energy is positive and significant predictor of attitude towards the brand and purchase intention. Results demonstrate that exposure to a dynamic drag force (dynamic thrust force) brand logo results in stronger (weaker) perceptions of brand energy, with heightened brand energy increasing attitude towards the brand and purchase intention. As the 95% bootstrapped confidence interval for the indirect effect of brand logo dynamism on both brand attitude (β = .52, 95% CI = .36 to .73) and purchase intention (β = .50, 95% CI = .33 to .72) did not include zero, a significant mediating effect is demonstrated, supporting Hypothesis 3.

General Discussion

We introduce brand energy, a construct distinguishable from brand engagement and one that can be influenced by work depicted through force and motion in an active brand logo (i.e., gravitational force, tension force, and air resistance force). The results of our studies provide evidence to suggest that force and motion in a dynamic brand logo heightens perceptions of brand energy by increasing perceived work, which we term the brand work-energy effect. We also propose and demonstrate that dynamic brand logos enhance brand attitudes and behavioral judgments. We show that the indirect effect of dynamic brand logos on brand attitudinal and behavioral judgments are significant via perceived brand energy not via brand engagement (as proposed as tested by Cian et al. 2014). We postulate that the motion in a kinematic brand logo results in more work and, therefore, more perceived brand energy when compared to a static brand logo with no motion. It is, therefore, possible that the effects observed by Cian et al. (2014) can be explained by our brand work-energy effect. Future research is needed in order to test this assertion.

This research is not without limitations. Our stimuli comprise of unknown brands. While we would expect the observed effect to hold within a real brand context, a comparison of the effect of work in brand logos for known brands (e.g., Wella (air resistance force), or Coach (tension force)) is needed to assess the rigor of the brand work-energy effect.

REFERENCES

Beggs, Joseph Stiles. (1983), Kinematics. CRC Press.
Newton, Sir Issac (1729), The mathematical principles of natural philosophy. Benjamin Motte; London.
Young, Hugh D. and Roger A. Freedman (2008), University Physics (12th ed.). Addison-Wesley: Dunfermline, United Kingdom.