Disfluency Effects on Inference and Evaluation

Ruomeng Wu, University of Cincinnati, USA
Esta Shah, University of Cincinnati, USA
Frank Kardes, University of Cincinnati, USA

Prior research suggests disfluency leads to unfavorable evaluations, and is mitigated by warnings of disfluency. We suggest a moderating role for need for closure, where warnings about disfluency mitigates the negative effect for low NFC consumers, but backfires for high NFC consumers by shifting attention from brand information to disfluency.

[to cite]:

[url]:
http://www.acrwebsite.org/volumes/1022116/volumes/v44/NA-44

[copyright notice]:
This work is copyrighted by The Association for Consumer Research. For permission to copy or use this work in whole or in part, please contact the Copyright Clearance Center at http://www.copyright.com/.
Disfluency Effects on Inference and Evaluation
Ruomeng Wu, University of Cincinnati, USA
Esta D. Shah, University of Cincinnati, USA
Frank R. Kardes, University of Cincinnati, USA

EXTENDED ABSTRACT

Prior research shows that fluency leads to positive consequence, while disfluency leads to negative consequence (Schwarz, Bless, Strack, Klumpp, Rittner-Schatka and Simons 1991; Reber, Winkielman and Schwarz 1998; Reber and Schwarz 1999; Winkielman and Fazendeiro 2003; Reber, Schwarz and Winkielman 2004; Unkelbach 2006, 2007; Novemsky, Dhar, Schwarz and Simonson 2007; Song and Schwarz 2008; Tsai and McGill 2011). For example, disfluency can lead to disliking (Reber et al. 1998).

Our research confirms prior research by showing that compared to normal information which is easy to process, difficult-to-process information lead to unfavorable evaluation and reduced purchases.

Although Consumers are usually insensitive to missing information by focusing on given information to form judgment and make decision (e.g. Sanbonmatsu, Kardes, and Sansone 1991), our research suggest that disfluency increases the sensitivity to incompleteness by encouraging individuals to question their first impressions during problem solving (Alter et al. 2007; Song and Schwarz 2008). This sensitivity to incompleteness contributes to disliking of disfluency.

In Study 1, we showed that difficult-to-read contrast color led to lower perceived information sufficiency, contributing to lower product evaluation and purchase intention.

Despite the negative consequence of disfluency, prior research shows that disfluency may be neglected or even valued under some circumstances (Galak and Nelson 2010; Deval, Mantel, Kardes and Posavac 2012).

Prior research demonstrates that the negative consequence of disfluency can be reduced or eliminated through debiasing technique, such as making consumers attribute the processing difficulty to the disfluency itself rather than the information or the product (Schwarz et al. 1991; Novemsky et al. 2007). Explicitly warning people of the difficulty (a debiasing technique) undermines the informational value of the disfluent experience, leading to a similar consequence as in the normal condition (Novemsky et al. 2007). Yet, only a limited number of literatures looks at conditions when debiasing techniques do not function or even backfire (Sanna and Schwarz 2003, 2006; Sanna, Schwarz and Stocker 2002). And hardly has any literature looked at how personal traits function on debiasing techniques.

In the present research, we explore how individual traits influence how people attribute processing difficulty. Specially, we study how need for cognitive closure (Kruglanski and Webster 1996) and consistently time pressure (Heaton and Kruglanski 1991) influence consumers’ evaluation based on warning of disfluency.

Our research shows that when brand information has been known, highs would base their evaluation on this earliest judgmental cue by neglecting the disfluency of the product information. When they are warned of the disfluency, their attention would be transferred to disfluency by using it as the primary judgment cue. Lows would avoid the influence of disfluency on evaluation when warned, since they have consider the product information at the first place.

In Study 2, Study 3a and Study 3b, we explored the role of explicit warning of disfluency based on need for cognitive closure (NFCC). In all 3 studies, disfluency was manipulated via easy-to-read font versus hard-to-read font.

Study 2 shows that when brand information had been known, consumers high and low in NFCC would differ in attribution based on warning. Consumers low in NFCC would adjust evaluation as more favorable after being warned. Consumers high in NFCC would form even more moderate evaluation when warned, as warning transferred their attention from brand to disfluency. Study 3 manipulated NFCC through high or low time pressure, and the results confirmed the findings in Study 2. In Study 3b, we deleted information about the brand, and found that when no brand information is shown, the difference between participants would disappear, such that all participants would adjust evaluation to higher when warned of disfluency. Different responses to warning of disfluency of participants high and low in NFCC or under time pressure, is based on whether brand has been known prior to disfluent information.

Nevertheless, warning of disfluency has no function on sensitivity to incompleteness. We believe that is because sensitivity to incompleteness is an implicit cognition. When a cognition (i.e. sensitivity to incompleteness), is implicit however, explicit warning may not function on correct attribution at all, since it’s hard for individuals to adjust the deeply rooted implicit attitude (e.g. Forehand and Perkins 2005). When warned of disfluency, participants may realize disfluency impacts their evaluation so that they can adjust evaluation accordingly, but may not be able to adjust their sensitivity to incompleteness due to its implicitness.

In Study 4, a response latency task was used to further test disfluency’s influence on sensitivity to incompleteness. Disfluency was manipulated via easy-to-read versus hard-to-read word-background contrast color. When the information was easy to read, participants responded more slowly to previously absent information than to previously present information, indicating an insensitivity to incompleteness in normal cases. When the information was hard to read, however, the difference disappeared. Participants responded equally fast to both present and absent information, indicating an increased sensitivity to incompleteness. Study 4 confirms findings of former studies, such that disfluency increases sensitivity to information incompleteness, attributing to unfavorable evaluation. This sensitivity is an implicit cognition.

REFERENCE


