How and Why Wearing Sunglasses Makes For Cool Consumers

Lili Wang, Zhejiang University
Amy Dalton, HKUST

What are the everyday antecedents of cool behavior? Five studies show that physically using a cool product – here, sunglasses – causes consumers to attend to cool people and brands, maintain emotional composure. These effects depend on the symbolic connection between sunglasses and coolness and via changes in consumers’ implicit self-perceptions.

[to cite]:

[url]:
http://www.acrwebsite.org/volumes/1021495/volumes/v44/NA-44

[copyright notice]:
This work is copyrighted by The Association for Consumer Research. For permission to copy or use this work in whole or in part, please contact the Copyright Clearance Center at http://www.copyright.com/.
How and Why Wearing Sunglasses Makes for Cool Consumers
Lili Wang, Zhejiang University, China
Amy Dalton, Hong Kong University of Science and Technology, China

EXTENDED ABSTRACT

The question of how cool becomes active in directing thought and action has received little theoretical analysis and empirical attention. Critical to understanding what drives cool, then, is identifying which aspects of our day-to-day consumer experiences mentally activate cool and affect how people think and act with respect to coolness. We posit that using a symbolically cool product may activate cool, thus making the source of activation a consumer’s own actions. We rely on sunglasses to study this issue.

Study 1 surveyed consumers regarding the behaviors and products they consider cool. We found that sunglasses were the most commonly listed “cool product” and were rated cooler than other fashion accessories and garments (e.g., scarves and jeans). In terms of cool behaviors, factor analysis established two dimensions: emotional composure (e.g., calmness under pressure) and nonconformity (e.g., slacking at school). These findings prompted us subsequently to manipulate cool activation using sunglasses, and to measure cool activation using emotional composure and academic underachievement.

Our first experiment, however, tested whether consumers wearing sunglasses pay more attention to people and brands that are cool over those that are neutral with respect to coolness. This study provides a strong test of cool activation because attention is less controllable than behavior, and because attention to cool stimuli is less subject to alternative explanations than behavioral measures. Attentional bias was examined in a dot probe task (MacLeod et al. 1986), which presents pairs of images simultaneously on a computer monitor. After the images disappear, a dot appears in place of one of the images and participants indicate whether the dot is on the right or left. If participants attend more to one image over the other, they will be faster to detect the dot when the dot replaces that image. Thus, response times should be faster when the dot replaces a cool image (e.g., Johnny Depp or Harley-Davidson) versus a neutral image (e.g., Mickey Mouse or Volvo). The results confirmed that people wearing sunglasses exhibited a greater attention bias to cool images compared to people in a control condition, for whom the sunglasses were visible on the desk but were not worn during the task (F(1, 170) = 3.89, p = .05; note: Satterthwaite adjusted df). In addition, people wearing sunglasses exhibited a greater attentional bias on trials where cool images were present compared to control trials where cool images were absent (F(1, 195) = 3.28, p = .07). These findings suggest that wearing sunglasses guides attention toward perceptual input that is cool.

Study 3 tested whether consumers wearing sunglasses underperform academically and exhibit emotional composure, hallmarks of cool behavior. Again under the guise of product evaluation, half were instructed to wear sunglasses throughout the study and half simply saw the sunglasses on their desk. Participants completed an “English language ability test” in which they received 5 minutes to generate as many words as possible from a set of scrambled letters (Dewall et al. 2011). Next, they were randomly assigned to receive positive or negative performance feedback and subsequently completed measures of shame, guilt and pride (Tangney and Dearing 2002). Compared to control participants, those who wore sunglasses performed worse on the test (t(99) = 1.96, p = .05), consistent with the notion that cool kids reject achievement norms and slack at school. They also maintained their composure, expressing less intense feelings of shame (F(1, 97) = 8.92, p < .004), guilt (F(1, 97) = 6.64, p = .01), and pride (F(1, 97) = 25.10, p < .001) in response to performance-related feedback. Importantly, performance did not predict emotions; rather, and as predicted, wearing sunglasses produced two independent effects: academic underperformance and emotional composure.

Study 4 tested whether these behavioral effects depend on the perception that sunglasses are cool. Participants were randomly assigned to sunglasses or control conditions before viewing a web-blog and advertisement that portrayed sunglasses either as cool or healthy (i.e., for UV-protection). Next, they completed a so-called filler task, a math matrices task (Gino et al. 2010), before answering questions about the website. Performance on the filler task was our dependent variable. As predicted, fewer matrices were solved in the sunglasses condition than the control condition but only when sunglasses were portrayed as cool (F(1, 162) = 10.76, p = .001) and not healthy (F < 1). Thus, as predicted, sunglasses’ symbolic meaning is critical to obtaining effects on cool behavior. Moreover, because wearing sunglasses did not affect performance in the healthy condition, we rule out the possibility that sunglasses impair performance through cognitive load or distraction.

Study 5 teased apart three completing underlying mechanisms – stereotype/construct activation, implicit self-perceptions, and explicit self-perceptions – by testing moderation by self-awareness and mediation by self-perceptions. Participants were assigned to the sunglasses or control condition. Self-awareness was manipulated in a “me/not me” self-description task (Markus 1977) in which participants indicated whether a series of personality and behavioral traits describes them (“me”) or not (“not me”). The low self-awareness condition was instructed to respond to items quickly, while the high self-awareness condition was instructed to respond accurately. Thus, self-perception was based on accessibility (introspection) in the low (high) self-awareness condition. All accounts make similar predictions under low self-awareness, predicting cool traits are more accessible in the sunglasses (vs. control) condition. Critically, predictions vary under high self-awareness. The explicit self-view account predicts that people wearing sunglasses continue to perceive cool traits as self-descriptive and to underperform academically. That is, a process whereby people consciously infer they possess cool traits and thus behave cooler would not be weakened by self-awareness (Bem 1972). Conversely, the two accessibility-based accounts predict that high self-awareness attenuates the effect of wearing (vs. not wearing) sunglasses, consistent with the notion that self-awareness undermines accessibility effects (Wheeler et al. 2008). The accessibility-based accounts can, however, be teased apart. Stereotype/construct activation implies a direct effect but implicit self-perception is indirect, with self-perception mediating behavior. Our findings supported the explicit self-perception account: people wearing sunglasses automatically internalize self-perceptions associated with coolness, and this drives cool behavior.

REFERENCES


