When and Why Do Consumers Share Product Harm Information?

Ale Smidts, Erasmus University Rotterdam, The Netherlands
Ezgi Akpinar, Erasmus University Rotterdam, The Netherlands
Peeter Verlegh, University of Amsterdam, The Netherlands

This paper aims to understand when and why consumers share product harm information. Across five studies, we showed that product harm information with higher self-relevance reduced sharing under independent self-construal. Under interdependent self-construal, negative effect of self-relevance on sharing was attenuated. Further, we demonstrated the underlying processes that shape sharing.

[to cite]:

[url]:
http://www.acrwebsite.org/volumes/1015562/volumes/v41/NA-41

[copyright notice]:
This work is copyrighted by The Association for Consumer Research. For permission to copy or use this work in whole or in part, please contact the Copyright Clearance Center at http://www.copyright.com/.
When and Why Do Consumers Share Product Harm Information?
Ezgi Akpinar, Erasmus University Rotterdam, The Netherlands
Peeter W.J. Verlegh, University of Amsterdam, The Netherlands
Ale Smidts, Erasmus University Rotterdam, The Netherlands

EXTENDED ABSTRACT

Consumers often encounter product harm information in different forms such as product harm crises, warnings about side effects or rumors. Cancer-causing dyes and materials used by fashion companies, such as Levi’s, Zara and Calvin Klein, brake problems in Toyota’s cars are a few but notable examples of mass-publicized product harm information. Product harm information might have detrimental effects such as hurting brand evaluations or sales (Ahluwalia, Burnkrant and Unnava 2000). Although it is clear that spreading of such information is important, there has been limited work on understanding transmission of negative information about products. In this research, we explore when and why consumers share product harm information with others.

Word-of-mouth (WOM) literature suggests that consumers are more likely to share information about products if they have a high level of interest in a product category (Sundaram, Mitra and Webster 1998). On the contrary, recent evidence suggests that negative WOM is often about other brands rather than one’s main brand or often other people’s experiences (East, Hammond and Wright 2007; De Angelis et al. 2012). Further, when individuals encounter threatening information that has high self-relevance, they engage in biased defensive processing strategies (Carvalho et al. 2008; Puntoni, Sweldens and Tavasoli 2011). These findings together suggest that higher self-relevance of the product harm information might lead consumers to share product harm information less.

Sharing is interpersonal process and is not only influenced by content characteristics (i.e., relevance of the information for the sender) but also social factors such as the relation between sender and receiver (Berger 2013). Most of the existing work in WOM so far has explored the relation between the sender and recipient (e.g., tie strength or similarity to the recipient). Yet, the way individuals see themselves in relation to others (self-construal) is not always due to their chronic disposition or context, but can be also shaped through environmental cues (Aaker and Lee 2001). Self-construal can influence how individuals process information and behave in their social interactions (Markus and Kitayama 1991). We suggest that self-construal should influence sharing behavior differently depending on self-relevance of the product harm information, through three distinct processes: defensive processes, desire to reduce one’s own worries, and helping others.

The following five studies show how content characteristics (self-relevance) and social factors (self-construal) explain product harm information sharing.

Study 1 tested the effect of self-relevance on sharing information under chronic-independent self-construal. In order to manipulate self-relevance, participants received a newspaper article about the potential side effects of plastic bottles. This article focused on either male or female health-issues. In the high self-relevance conditions, participants received information about risk for their own gender, while low self-relevance was created by providing information about risk for the other gender. After reading the article, a confederate engaged in a conversation with the participant. Our key dependent measure was whether participants were willing to talk about the information with confederate. Participants were less likely to share health risk information, when the information was more self-relevant (i.e., pertained to their own gender).

In Study 2, we tested the boundary condition of self-relevance on sharing. Participants were randomly assigned to one of the two conditions (severity: low vs. high). Participants’ hair styling products usage was used as a proxy for self-relevance. Participants read a newspaper article discussing about the health risks of hair styling products, where severity was manipulated. Participants indicated their likelihood of sharing the information on a 7-point scale. Product harm information with high severity (e.g., heart problems) was less likely to be shared when self-relevance was higher, and this effect was reversed for those with low severity (e.g., sleepiness).

Study 3a and 3b examined how self-construal of individuals influences sharing product information with different levels of self-relevance. In Study 3a, we manipulated self-relevance using the same procedure as Study 1. Participants were provided with the option to share the article with people outside the lab, by clicking on the share buttons via social network sites. Supporting our predictions, self-construal moderated the effect of self-relevance on sharing. While under independent self-construal, heightened self-relevance decreased sharing; this effect was attenuated under interdependent self-construal. In Study 3b, by using a continuous self-relevance measure, another self-construal priming technique and scenario, we replicated our results.

In Study 4, we tested underlying processes. Participants were asked for their permission to provide their saliva sample in the behavioral lab and received their (purposely prepared) saliva sample reports that reported duclin (fictitious) levels, which was either high or low. Self-construal was primed using a pronoun-circling task. Further, participants read a newspaper article discussing health risks of Stevia (food additive). In order to manipulate self-relevance, Stevia either poses risk for people who have high or low levels of duclin. After reading the article, participants completed process measures (defensive responses, desire to reduce one’s own worries and helping others) and indicated likelihood of sharing the information.

Mediation analyses supported our theorizing. First, higher self-relevance of the product harm information under independent self-construal increases defensive processes, which decreases sharing. Second, higher self-relevance of the product harm information under interdependent self-construal increases desire for reducing one’s own concerns and helping others, which both then increases sharing. Study 4 showed the generalizability of our findings and provides deeper insights into the processes behind these effects.

This research makes several important theoretical contributions. First, we integrate work in word-of-mouth and information processing literature by showing that self-relevance of the information can also play an important role in sharing product harm information. Second, we contribute to word-of-mouth literature as less is known about role of context on transmission. Finally, we address the gap in defensive biases work by studying the role of social factors. This work has important implications for marketers but also for public policy makers protecting consumers’ welfare.

REFERENCES

Aaker, Jennifer and Angela Lee (2001), “‘I’ Seek Pleasures and ‘We’ Avoid Pains: The Role Self-Regulatory Goals in Information Processing and Persuasion,” Journal of Consumer Research, 28 (1), 33-49


