A Longitudinal Study of Consumers’ Need For Uniqueness on Development of Networks

Seung Hwan (Mark) Lee, University of Western Ontario, Canada
Gail Leizerovici, University of Western Ontario, Canada

Based on a longitudinal field study of a college dormitory network, we find that the three components of consumer’s need for uniqueness (CNFU) each play a distinct role in the development of a consumer’s social network. Results suggest the rate of individual’s network growth (perceptual and actual) depends on individual’s CNFU.

[to cite]:

[url]:

http://www.acrwebsite.org/volumes/1009167/volumes/v39/NA-39

[copyright notice]:

This work is copyrighted by The Association for Consumer Research. For permission to copy or use this work in whole or in part, please contact the Copyright Clearance Center at http://www.copyright.com/.
A Longitudinal Study of Consumers’ Need for Uniqueness on Development of Networks

Seung Hwan (Mark) Lee, University of Western Ontario, Canada
Gail Leizerovici, University of Western Ontario, Canada

ABSTRACT

Based on a longitudinal field study of a college dormitory network, we find that the three components of consumer’s need for uniqueness (CNFU) each play a distinct role in the development of a consumer’s social network. Results suggest the rate of individual’s network growth (perceptual and actual) depends on individual’s CNFU.

Research suggests consumers with high need for uniqueness may be both successful and unsuccessful in maintaining and attaining social relationships (Lynn & Harris, 1997; Snyder & Fromkin, 1980; Tian, Bearden, & Hunter, 2001). Unique individuals exhibit an exclusive appeal that elicits positive social evaluations (e.g. a person displaying a creative style of fashion such as a seven button suit). On the other hand, unique individuals may encounter social disapproval if they choose to be too extreme with their consumption choices (e.g., a person displaying an odd form of fashion such as an orange spandex suit). Despite these presumptions, there has been no direct attempt to explicitly investigate the social benefits and costs of being unique on the development of individuals’ social network. While scholars have speculated on the social consequences of being unique (e.g., Snyder & Fromkin, 1980; Tian et al., 2001), we do not know the impact which unique consumers have on their friendship selection processes. In response, we explore an emerging social network (longitudinally) to investigate the effects of consumers’ need for uniqueness (CNFU) on individuals’ social network development.

There are reasons to suggest that being unique in a network can have positive and negative consequences to individuals’ social network development. For instance, being too unique can result in social sanctions (Ruvio, 2008). Consumers sometimes use products that deviate from social norm (Tian et al., 2001); breaking rules or challenging existing rules at the risk of social disapproval results in negative evaluations such as the perception of poor style (Tian et al., 2001). Thus, individuals may encounter negative social reactions and social disapproval which in turn constrains one’s social network development (i.e., make less friends). Conversely, scholars have suggested that the desire for uniqueness is influenced by the individual’s need for social assimilation and social approval (Ruvio, 2008). Here, uniqueness is sought only to the point where it precludes individuals from social isolation or strong disapproval (Snyder & Fromkin, 1980). In such cases, consumers may use distinctiveness as an opportunity to elicit positive social evaluations through making creative choices that enhance their personal style. That is, individuals distinguish themselves in the hopes of obtaining greater social rewards (Santee & Maslach, 1982). Thus, being unique is beneficial to one’s social network development (i.e., make more friends).

Given that the literature has identified that being unique has both positive and negative consequences for the consumer, our present research investigates the social benefits and costs of CNFU on individuals’ social network development. Regrettably, research in this domain has a limited understanding of how CNFU influences networks. While previous research has implied numerous social outcomes for unique individuals (Ruvio, 2008; Tian et al., 2001), not much is known about how relationships are formed and maintained over time. For this reason, the current study is designed to explore the effects of CNFU on the dynamic transformation of individuals’ social network. Specifically, we ask the following questions: how does CNFU positively or negatively affect the dynamic growth of individuals’ social network? How does CNFU influence consumers’ choice of friendships and their ability to attract friendships in an emerging social network? These research questions provide a guiding framework for our study.

Findings from our longitudinal network research contribute to the extant literature in two distinct ways. Theoretically, we show that the extent to which individuals actively widen or condense their social network is dependent on whether they are creative with their identity or avoid peers that have similar identities. Further, the extent to which unique consumers are able to attract friendships is dependent on whether their unique display is within the confines of group norms. Furthermore, we find differences in how CNFU affects individual’s perception of their social network vs. their actual network (as rated by others). These findings add to the current stock of knowledge and validate the important role of CNFU in consumer networks. Methodologically, this is one of the first longitudinal studies in consumer behavior to track the developmental patterns of an emerging social network. Using the latest social network method, the current research introduces an actor-based modelling technique (Snijde, van de Bunt, & Steglich, 2010; Snijders, Steglich, Schwinberger, & Huisman, 2007) to observe the unique effects of CNFU on individuals’ social network development.

CONCEPTUAL FRAMEWORK

There is a plethora of evidence to suggest that consumers have a desire to differentiate themselves from others or to “counterconform” (Berger & Heath, 2007; Snyder & Fromkin, 1980; Tian et al., 2001). Counterconformity is an individual’s motivation to maintain a sense of distinctiveness; people constantly define themselves on various self-related dimensions in order to develop their exclusive social identities (Tian et al., 2001). Furthermore, when people see themselves as highly similar to others, they become motivated to seek a unique personal identity within their social environment (Berger & Heath; 2007; Snyder & Fromkin, 1980). For example, individuals who were led to believe that they were similar to others subsequently attached greater importance to being independent, placed a higher value on rare items, generated more unusual uses for an object, and conformed less with others on judgment tasks (Duval & Wicklund, 1972; Fromkin, 1970).

According to uniqueness theory, consumers are known to purchase products that serve as expressive symbols of uniqueness (Snyder & Fromkin, 1980; Tian et al., 1977). Individuals are motivated to acquire unique possession for the purpose of determining and shaping their self-image, as well as using these possessions to establish individuality within their social networks (Lynn & Harris, 1997; McAlister & Pessemier, 1982). Acquiring unique possessions ultimately provides the opportunity to signal and communicate a desired identity to others (Berger & Heath, 2007). Given that consumers are known to counterconform, this also reflects the underlying motivation behind consumers’ need for uniqueness (CNFU), the trait of interest in our longitudinal study.
Consumers’ Need for Uniqueness (CNFU)

Conceptually, CNFU is “the trait of pursuing differences relative to others through the acquisition, utilization, and disposition of consumers goods for the purpose of developing and enhancing one’s self-image and social image” (Tian et al., 2001). Thus, CNFU is a personality trait that is related to uniqueness theory, where the underlying self presentation goal entails choosing options that have carefully considered social consequences (Worchel, Lee, & Adewole, 1975; Tian et al., 2001).

Extant literature has identified that consumers vary in the manner which they exhibit counter conforming behaviors (Ruvio, Shohan, & Brencic, 2008; Tian et al., 2001). In particular, CNFU has demonstrated that consumers can express their counterconformity via three distinct behaviours: creative counter conforming behavior, unpopular counter conforming behavior, and avoidance of similarity behavior (Ruvio et al., 2008; Tian et al., 2001). CNFU is regarded as the higher order construct that encompasses these three distinct counterconforming dimensions. Given that there are conceptual differences among the three dimensions, we predict each type of counter conforming behavior will play a distinct role in individuals’ social network development.

Creative choice counter conformity (CC) refers to an individual’s ability to acquire and use products that reflect a personal style which is socially accepted and valued by others (Snyder & Fromkin, 1977; Tian et al., 2001). Individuals with a high need for CC strive to establish a unique identity without risking their social reputation or image (Snyder & Fromkin, 1980). While creative choices involve some risk (Kron, 1983), these acts are made strategically in order to obtain positive social evaluations and approval from their network of friends (Santee & Maslach, 1992; Snyder & Fromkin, 1977). An example of this might be the choice to purchase and use a socially accepted electronic product, such as an iPad, in a manner that is creatively different from the norm. Thus, CC reflects individual’s ability to create a personal style that is viewed as socially acceptable. It is expected CC will have a positive effect on individuals’ social network development (i.e., make more friends) over time.

In contrast, consumers may make “unpopular” choices that are considered unacceptable and thus display a behavior that risks social disapproval. Unpopular choice counter conformity (UC) refers to an individual’s selection of products or brands that reflect norm-breaking consumption behavior (Tian et al., 2001). Individuals with high need for UC face the risk of social disapproval because their choices may be considered taboo and socially unacceptable (Tian & Bearden, 1992). For example, an individual’s choice to refrain from spending, or “downshift” (see Schor, 1998) may appear to counter conform with popular consumer culture. Such behavior may be judged as socially norm-breaking, such as when a “downshifter” decides to live off only the basic necessities. While it is possible that these choices may gain social approval over time (Heckert, 1989), violating social customs may initially draw negative social reactions from others (Santee & Maslach, 1982). In consequence, this form of behavior is likely to lower a person’s social image and reputation in his or her social circles (Tian et al., 2001). Thus, UC reflects the individual’s desire to challenge social norms via their engagement in unpopular decisions. It is expected UC will have a negative effect on individuals’ social network development (i.e., make less friends) over time.

Finally, avoidance of similarity (AS) refers to an individual’s desire to discontinue the use of or have the loss of interest in products which are mainstream in the market (Tian et al., 2001). Avoiding similarity prompts individuals to suspend the use of their current possessions and resist purchasing widely adopted products in order to avoid appearing similar to others (Ruvio, 2008). Individuals with high need for AS seek innovative trends to resist conformity (Thompson & Haytko, 1977). For example, they avoid similarity by pursuing a “minority choice” that establishes their dissimilarity from others (Tian & Bearden, 1992). This perspective embodies a rejection of popular mainstream products to subsequently enforce the individual’s uniqueness via their dissimilarity. For example, an individual high in AS may choose to only purchase and wear vintage clothes. In this manner, this individual is avoiding and resisting mainstream trends and products in lieu of lesser known ones. Thus, AS is driven by an individual’s motivation to avoid similar others by engaging in consumption that is deemed to be dissimilar. Further, in the pursuit of avoiding similar others, such individuals may be perceived negatively. Appearing dissimilar may result in subsequent negative judgments as such extreme consumption displays contradict socially approved signalling behaviors (i.e. see Colarelli & Dettmann, 2003). As a result, it is expected AS will negatively affect individuals’ social network development over time.

METHODOLOGY

To test the influence of the three types of counterconformity, we conducted a longitudinal field study. This field study uses social network analysis to track the changing and dynamic patterns in an emerging social network. Social network analysis (SNA) has emerged as a key technique in modern research to develop a better understanding of the structures of relationships and their effects on behavior (Wasserman & Faust, 1994). Network analysis investigates the quantitative structural properties of networks which typically cannot be extracted from a study of individual or dyadic relationships (Webster & Morrison, 2004). The network data collected allows researchers to trace the connections between individuals (linkages and ties), which cannot be realized through a traditional sample survey method. Other marketing studies on CNFU that have attempted to capture relational data using traditional sample survey methods and the use of retrospective data suffer from inaccuracy in describing properties of the networks and the connections between individuals (c.f. Reingen & Kernan, 1986; Iacobucci & Hopkins, 1992). With SNA, this method allows the gathering of information from all members included within a network. This ultimately provides a significant advantage to understanding how CNFU influences social network development. Moreover, this study introduces a stochastic actor-based model to observe the change in network dynamics over time (Smidts et al., 2010). The following study captures these relational changes and simultaneously assesses the effects on CNFU on these network changes.

PARTICIPANTS AND PROCEDURE

The data were collected from 71 first year college dormitory students from a single floor at a large North American university. Participants filled out questionnaires at two different time-periods. At both time periods, a paper-and-pen questionnaire was administered for every student living on the floor. Time 1 (T1) data was collected approximately 5-6 weeks after the start of the academic year to allow participants to have some perception of their social network. Time 2 (T2) data was collected 5-6 weeks after the start of their second semester (early February). At T1, 76 of 83 students (response rate of 92%) provided usable data for analysis. At T2, 71 of 83 students (response rate of 86%) provided usable data for analysis. However, to ensure parallel comparison between the two time-periods, we included only those that have responded in both time-periods. Thus, five participants were dropped from the T1 data. Figure 1 is a graphical display of the social network over time.

Friendship Nomination. In both time periods, participants were asked to indicate their social relationships with every other student on their floor. Students were provided an alphabetical listing of all of the occupants and were asked to rate their level of friendship (1 – do not or barely know; 2 – acquaintance; 3 – friend; 4 – close friend) with every other student on the floor.
Figure 1:
Diagrams of Network Change over Time: College Dormitory Network

The data then was arranged into an NxN binary matrix (Wasserman & Faust, 1994). Each cell (Xij) in this matrix corresponded to i’s relation to j as reported by i. Then, the network matrix was used to calculate individual’s out-degree ties (the total number of people the focal person nominated as friends or close friends) and their in-degree ties (the total number of people that nominated the focal person as a friend or a close friend). Out-degree is considered to be a measure of the individual’s perception of popularity and in-degree is considered to be a measure of the individual’s popularity (as rated by others) in a social network (Freeman, 1979; Lee, Cotte, & Noseworthy, 2010). Given that this was a longitudinal study, we were able to track the change in development of out-degree ties and in-degree ties over time. Providing a list of participants to respondents (i.e. the roster method) helped us overcome potential recall biases and is considered to be a more reliable method of network data collection than asking respondents to come up with names on their own (Wasserman & Faust, 1994).

Consumers’ Need for Uniqueness. Consumers’ need for uniqueness was measured using a short-form 12-item scale adapted from Ruvio et al. (2008). A parsimonious measure of CNFU was used in favor of the original 31-item scale (see Tian et al., 2001) to minimize respondent fatigue. The 12-item CNFU index was scored on a 7-point Likert-type scale ranging from 1 to 7 with descriptive anchors “Strongly disagree” and “Strongly agree”. Sample items on the scale included, “I often combine possessions in such a way that I create a personal image that cannot be duplicated” (Creative Choice), “When it comes to the products I buy and the situations in which I use them, I have broken customs and rules” (Unpopular Choice), and “I often try to avoid products or brands that I know are bought by the general population” (Avoidance of Similarity). Each component of CNFU included 4 items which was averaged to create a single factor for each dimension (for a total of three factors). An exploratory factor analysis confirmed that each of the dimensions loaded on its respective factors (.73 and above) with sufficient internal reliability (Cronbach alpha over .80). The CNFU index was assessed only at T1. CNFU was not measured again at T2 because conceptually, it is a stable trait that does not change substantially over time (Tian & McKenzie, 2001). Methodologically, it was done to minimize survey length and respondent fatigue as each participant was asked to rate their friendship status with every other person on their floor.

DATA ANALYSIS

To analyze the effects of CNFU on individuals’ social network development, a stochastic actor-oriented model of network dynamics was assessed using the SIENA 3.14 (Simulation Investigation for Empirical Network Analysis) software (Snijders et al., 2007). SIENA is part of the StOCNET program collection (Boer, Huisman, Snijders, & Zeggelink, 2007) that is used to carry out statistical estimation of dynamic actor-driven models. The actor-oriented model follows a Markov process where it is assumed that the properties of the next state depend on the properties of the previous state (Meyn & Tweedie, 1993). That is, the events of two time periods observed in this study were not assumed to be independent events. The actor-oriented model is useful for modeling network dynamics that can represent a wide variety of influences on network change, especially for representing theories about how actors alter their social ties over time (Snijders et al., 2010). This method is considered appropriate for observing the rate of change in networks and for observing the effects of personal characteristics on individuals’ friendship selections over time. This technique has been successfully applied in other areas of research; scholars have investigated the effects of the big five personality traits, smoking, and delinquency behaviors on social network development (Burk, Steglich, & Snijders, 2007; Mercken et al., 2010; Selfhout et al., 2010). A technical and more detailed explanation of the processes and assumptions of this method can be found elsewhere (see Huisman & Snijders, 2003; Snijders et al., 2010).

The actor-oriented model, when elaborated upon for application use, contains parameters that are estimated from the observed data by a statistical procedure (Snijders et al., 2010). For instance, the effects of CNFU on the development of network ties are assessed by examining the parameter estimates of three selection effects: ego effect, alter effect, and the similarity effect (Burk et al., 2007). These selection effects are derived from a sociological understanding of relationships, where actual or perceived similarity (homoph-
ily) among friends is a result of the influence that an individual has (alter) on the focal individual (ego) (Kandel, 1978). In the context of our research, a positive (negative) ego effect implies that CNFU is positively (negatively) associated with an individual’s ability to build social ties, and thus, is likely to increase (decrease) the number of friendship nominations made over time. A positive (negative) alter effect implies that CNFU is positively (negatively) associated with being attractive as a friend, and thus, is likely to result in an individual receiving more (fewer) friendship nominations over time. Lastly, a positive (negative) similarity effect implies that individuals prefer friendships with others that have similar (dissimilar) levels of CNFU (i.e., homophilous selection). Since the CNFU construct consists of multiple dimensions (creative counterconformity, unpopular counterconformity, and avoidance of similarity), these three selection effects were estimated for each of the three dimensions.

Moreover, additional effects were included in the final analysis as covariates. The analysis included three network effect covariates that naturally occur in developing networks (Mercken et al., 2010; Snijders et al., 2010). We included density effect, reciprocity effect, and transitivity effect. Density effect is the tendency for people to selectively nominate friends. A significant negative estimate implies that individuals do not nominate friends at random. Reciprocity effect is the tendency of individuals to reciprocate relationships. A significant positive estimate implies people tend to select those whom they share a dyadic relationship with. Finally, transitivity effect is the tendency for people to form triadic relationships over time. A significant positive estimate implies people tend to select friendships with those who are friends of friends. The inclusion of these covariates was necessary to ensure that the effects of CNFU were not confounded by these factors (Snijders et al., 2010; Wasserman & Faust, 1994).

The SIENA output provides parameter values for the selection effects and the network effects. Overall, a total of 12 parameters were simultaneously entered into a model: ego, alter, and similarity effects of each of the three CNFU dimensions plus the three covariates (density, reciprocity, and transitivity effects). The dependent variable is the change (or the lack thereof) in friendship ties from time 1 to time 2 (absent → present or present → absent). Table 1 summarizes and provides a description of each of the effects examined in this study. In addition to the studied effects, interaction terms were also created (CC × UC), (UC × AS), (CC × AS), (CC × UC × AS) and modeled separately in another analysis. However, none of the interaction terms revealed any significant results, and thus were omitted from the report.

Table 1: Description of Network and Selection Effects

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Effects:</td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>General tendency to choose friend at random</td>
</tr>
<tr>
<td>Reciprocity</td>
<td>Tendency to reciprocate friendships</td>
</tr>
<tr>
<td>Transitivity</td>
<td>Tendency to prefer triadic closure (become friends of friends’ friend)</td>
</tr>
<tr>
<td>Selection Effects:</td>
<td></td>
</tr>
<tr>
<td>CC Ego</td>
<td>The rate CC determines social activity (friendship nomination)</td>
</tr>
<tr>
<td>CC Alter</td>
<td>The rate CC determines popularity (nominated by others as a friend)</td>
</tr>
<tr>
<td>CC Similarity</td>
<td>Preference for choosing a friend with similar CC (homophily)</td>
</tr>
<tr>
<td>UC Ego</td>
<td>The rate UC determines social activity (friendship nomination)</td>
</tr>
<tr>
<td>UC Alter</td>
<td>The rate UC determines popularity (nominated by others as a friend)</td>
</tr>
<tr>
<td>UC Similarity</td>
<td>Preference for choosing a friend with similar UC (homophily)</td>
</tr>
<tr>
<td>AS Ego</td>
<td>The rate AS determines social activity (friendship nomination)</td>
</tr>
<tr>
<td>AS Alter</td>
<td>The rate AS determines popularity (nominated by others as a friend)</td>
</tr>
<tr>
<td>AS Similarity</td>
<td>Preference for choosing a friend with similar AS (homophily)</td>
</tr>
</tbody>
</table>

RESULTS

Means, standard deviations, and correlations among the relevant variables at T1 and T2 are reported in Table 2. The final sample (N=71) included 37 females and 34 males. Overall, the total number of ties in the network equaled to 472 ties in T1 and 1194 ties in T2. The average out-degree and in-degree ties in T1 were 6.65. The average out-degree and in-degree ties in T2 were 16.82. Table 3 illustrates the aggregated results of the parameters modeling the selection effects (ego, alter, and similarity), as well as the network effects (density, reciprocity, and transitivity). As expected, all three of the network effects were significant predictors of network development. The density parameter was significantly negative ($B = -1.63, SE = .05, t = -30.67, p < .001$), indicating that people did not tend to nominate friends at random (making friendship was a selective procedure). The reciprocity effect was significantly positive ($B = .67, SE = .08, t = 8.17, p < .001$), indicating people preferred to have reciprocal friendships. Lastly, the transitivity effect was significantly positive ($B = .06, SE = .00; t = 17.54, p < .001$), indicating people’s preference to form triadic relationships over time. These results are consistent with previous longitudinal network studies in other disciplines (e.g., Burk et al., 2007; Mercken et al., 2010), further underlining the necessity to control for such network mechanisms when observing dynamic networks.
Table 2
Overall Means, Standard Deviations, and Correlations

<table>
<thead>
<tr>
<th></th>
<th>M (SD)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Out-Deg T1</td>
<td>6.65 (5.12)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. In-Deg T1</td>
<td>6.65 (4.68)</td>
<td>.45**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Out-Deg T2</td>
<td>16.82 (8.67)</td>
<td>.57**</td>
<td>.13</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. In-Deg T2</td>
<td>16.82 (5.70)</td>
<td>.28*</td>
<td>.55**</td>
<td>.24*</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. CC</td>
<td>3.62 (1.26)</td>
<td>.12</td>
<td>.01</td>
<td>-.08</td>
<td>-.02</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. UC</td>
<td>3.36 (1.20)</td>
<td>-.09</td>
<td>-.00</td>
<td>-.11</td>
<td>-.09</td>
<td>.45**</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7. AS</td>
<td>4.53 (1.14)</td>
<td>.03</td>
<td>-.03</td>
<td>-.12</td>
<td>.05</td>
<td>.59**</td>
<td>.37**</td>
<td>1</td>
</tr>
</tbody>
</table>

Significance levels: *** p < .001, ** p < .01, * p < .05

Table 3:
SIENA Estimation Results

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Estimates</th>
<th>Std. Error</th>
<th>t-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Effects:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>-1.63</td>
<td>.05</td>
<td>-30.67***</td>
</tr>
<tr>
<td>Reciprocity</td>
<td>.67</td>
<td>.08</td>
<td>8.17***</td>
</tr>
<tr>
<td>Transitivity</td>
<td>.06</td>
<td>17</td>
<td>17.24***</td>
</tr>
<tr>
<td>Selection Effects:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC Ego</td>
<td>.07</td>
<td>.03</td>
<td>2.39*</td>
</tr>
<tr>
<td>CC Alter</td>
<td>-.03</td>
<td>.03</td>
<td>-.96</td>
</tr>
<tr>
<td>CC Similarity</td>
<td>.30</td>
<td>.16</td>
<td>1.87+</td>
</tr>
<tr>
<td>UC Ego</td>
<td>.06</td>
<td>.03</td>
<td>2.10*</td>
</tr>
<tr>
<td>UC Alter</td>
<td>-.05</td>
<td>.02</td>
<td>-2.00*</td>
</tr>
<tr>
<td>UC Similarity</td>
<td>.11</td>
<td>.16</td>
<td>.70</td>
</tr>
<tr>
<td>AS Ego</td>
<td>-.14</td>
<td>.03</td>
<td>-4.16***</td>
</tr>
<tr>
<td>AS Alter</td>
<td>.04</td>
<td>.03</td>
<td>1.49</td>
</tr>
<tr>
<td>AS Similarity</td>
<td>-.15</td>
<td>.19</td>
<td>-.78</td>
</tr>
</tbody>
</table>

*Note: CC = Creative Counterconformity; UC = Unpopular Counterconformity; AS = Avoidance of Similarity. Unstandardized estimates are shown. Significance of mean parameters is calculated by dividing the parameter estimates by their standard errors.

*Significance levels: *** p < .001; ** p < .01; * p < .05, + p < .1

More importantly, the findings from the three selection effects for each dimension of CNFU provide interesting insights on the role of CNFU in emerging networks. When examining the CC parameters, the results reveal a significant positive estimate for the CC ego effect ($B = .07, SE = .03, t = 2.39, p < .05$) and the CC similarity effect ($B = .30, SE = .16, t = 1.87, p < .1$). The results show CC is positively associated with the rate of growth in outgoing ties and the rate in which individuals select similar others over time. When
examining the UC parameters, the results show a significant positive estimate for the UC ego parameter ($B = .06, SE = .03, t = 2.10, p < .05$), but a significant negative estimate for the UC alter parameter ($B = -.05, SE = .02, t = -2.00, p < .05$). The results show UC is positively associated with the rate of growth in outgoing ties over time. Conversely, UC is negatively associated with the rate of growth in incoming ties over time. Finally, regarding the AS parameters, the results show a significant negative estimate for the AS ego parameter ($B = -.14, SE = .03, t = -4.16, p < .001$). In contrast to the other two dimensions, AS is negatively associated with the rate of growth in outgoing ties over time. All other effects are not significant.

GENERAL DISCUSSION

The findings clearly demonstrate that the three dimensions of CNFU each play a unique role in the development of a social network. Over time, the results suggest unique individuals have a desire to widen their personal network, but not if they have a need to avoid similar others. The results also suggest the individuals’ rate of network growth diminishes if they violate social norms.

People with a higher need for CC increased their number of friendship nominations (ego effect) and tended to make friendships with those who were similar to them (similarity effect). This pattern of observed events is further supported by the optimal distinctiveness theory (Brewer, 1991). According to this theory, people are motivated by two competing needs: the desire to be unique (capacity to freely express his/her unique identity) and the desire to be social (capacity to socially acclimatize with their peers). Brewer argues that people’s desire for uniqueness is constrained and influenced by their desire for social assimilation. That is, individuals experience social dissonance if there is an imbalance between differentiation and assimilation (Brewer, 1991).

CC individuals tend to establish their unique identity by making creative choices that are socially applauded by others (Tian et al., 2001), thereby deriving a fine balance between uniqueness and social acceptance goals. These individuals look for an optimal level of distinctiveness as the goal is to both maximize their level of differentiation and their social utility (Brewer, 1991). However in order to achieve this feat, CC individuals must actively build a personal network to increase others’ exposure to their uniqueness. By enlarging their social network, CC individuals increase their opportunities to display their creative choices, fulfilling this particular social need, while also fulfilling their need for differentiation. Moreover, since CC individuals are concerned with their social identity (as much as their unique identity), they are more likely to seek individuals who will appreciate their creative efforts. Thus, CC individuals will choose to develop friendships with similar others to be able to experience their peers’ support and encouragement.

Although, and counter-intuitively, the data shows CC individuals did not necessarily attract more friends over time. We know that CC individuals want to creatively differentiate themselves in the hopes of obtaining positive social rewards such as gaining more friendships and/or popularity (Santee & Maslach, 1982). However, our research shows that this does not necessarily translate into being perceived as more attractive friendship partners by others. In other words, while CC individuals believe that they develop more social ties over time, others in the social network do not have the same sentiments. Thus, the fact that CC individuals perceive that they obtain more friends than they actually do suggests an inherently erroneous overestimation of their network size. This is an important finding because it clearly delineates that what CC individuals perceive is altogether different from their reality. Thus, it is possible that these individuals are overestimating the benefit that they achieve from being creatively unique.

Next, UC was positively associated with the rate of growth in outgoing ties over time (ego effect), but was negatively associated with the rate of growth in incoming ties over time (alter effect). Similar to CC individuals, UC individuals seek to widen their social network in order to increase their exposure to others. Unfortunately, it appears that these unique displays come at a social cost. UC individuals make extreme consumption choices that are often reprimanded for deviating from the social norms and customs (Tian et al., 2001). As a consequence, they become less attractive as friendship partners because of the inherent symbolic attachment to such unique consumption choices (Snyder & Fromkin, 1980; Tian et al., 1977). In addition, research has shown that people who assert their unpopular choices tend to have a lack of concern for others (Tepper & Hoyle, 1996). This lack of concern which UC individuals display in front of others may translate into loss of friendships, as they may have greater difficulty in fostering social relationships. Therefore, the inability to distinguish themselves in a socially appropriate manner, as well as their general lack of regard for others appear to be considerable factors to their lower and less popular selection rates over time.

Finally, AS was strongly negatively associated with the rate of growth in outgoing ties (ego effect). This result stands in stark contrast to the other two dimensions that imply unique individuals tend to increase their social network over time. This particular finding also indicates that people with a higher need for AS do not have the same desire to display their unique identity to others in their network. AS individuals define their unique identity by avoiding similar others (Ruvio et al., 2008). That is, instead of finding creative (such as CC) or extreme (such as UC) ways to diverge from the norm, AS individuals would avoid others to reduce the risk of having their identity copied (Tian et al., 2001). Prior research suggests that people diverge in their consumption choices to ensure that others will make desired identity inferences about them (Berger & Heath, 2007). That is, a large part of maintaining the unique self is by deciding whom to communicate this unique identity to. Given this motivation, AS individuals will actively seek to reduce their social network in order to maximize their unique appeal as well as to protect their unique identity from becoming mainstream. When personal networks get larger, the impact of one’s uniqueness becomes marginalized, particularly in cases where there are others who possess similar identities. Therefore, AS individuals will actively seek to reduce their network to enforce and maintain their distinct identities.

Collectively, these results illustrate an interesting narrative. First, it appears that unique individuals who strive to be creative (CC) or unpopular (UC) with their choices widen their social network in an effort to further promote their unique characteristics. In contrast, unique individuals who strive to avoid similar others (AS) are more cautious of maintaining their unique appeal, and in turn reduce the size of their network in order to protect their identity from becoming common and diluted. This suggests individuals’ desire to attain or maintain social ties is dependent on one’s specific uniqueness motivation. Second, it appears that CC individuals tended to bond together over time. Since CC individuals are more conscious of the social outcomes of their unique identity, these individuals are more likely to stick together to support each other’s unique identity. Finally, consistent with previous research, UC individuals experienced a negative social outcome (i.e., were regarded less attractive as friends) despite the perception that they had built a larger network.

Individuals high in CNFU tend to make choices that mirror their underlying counterconforming motivations. Such choices can extend beyond the relationships developed with others, to consumption decisions made to reflect their individual preferences. For example, these individuals may prefer distinct product designs and attributes
that are not likely to be possessed by others (Snyder & Fromkin, 1980). In response, marketers have tried to generate ad messages that portray uniqueness appeals and product scarcity appeals as a means of attracting those who desire to be dissimilar from others (Lynn & Harris, 1997; Snyder, 1992). Given this real effort and trend, the findings from this research stand to contribute to the body of work used by today’s marketing practitioners.

Our findings suggest that unique individuals (for example, CC / UC) have a desire to actively build their personal network with specific motivations in mind. While some individuals may strive to find other creatively likeminded friends (CC), others may strive to stick to a rather small network of individuals who exhibit dissimilar preferences (AS). As a result, marketers are advised that highlighting the social benefits of a unique product can act as a tool for enhancing a particular individual’s social appeal. In particular, our results show that CC and UC individuals appear to have a clear desire to build their social network. However, these groups of individuals also seem be unsuccessful in doing so. Furthermore, our findings suggest that unique individuals are less attractive as social partners if they are in violation of social norms (UC). Hence, too much extremity in product designs, for example, which is incongruent with social norms, may create challenges for counterconforming consumers looking to maintain their social relationships. To circumvent this issue, marketers could emphasize the “optimal distinctiveness” (Brewer, 1991) of their extreme product offerings. This provides clarity regarding the product’s capacity to provide social differentiation, while simultaneously balancing the importance of and providing social assimilation.

This study has several limitations. First, the current study is limited to the confines of the artificial boundary of the network as the data contains only the friendships that were developed within the same floor. Although these floor friends represent an important part of one’s social environment, it is possible that the results may be confounded by the friendships that were formed outside of this network (e.g., other floors, other dorms, etc.). Second, the SIENA model is limited to assessing dichotomous network ties (0 for absence, 1 for presence); thus, the network data fails to capture the effect of CNFU on the strength of relationship ties. Third, SIENA analysis makes the assumption that all network members are equally available as potential friends. However, this study may contain biased parameters as people who are roommates or live in the same wing of the floor may have a higher likelihood of forming friendships. Finally, the longitudinal data was collected within a short period of five months. It is possible that examining only two data points in five months may be too restrictive, and more data in successive waves may be necessary to capture the broader extent of peoples’ social network development.

Despite these shortcomings, this study offers important advantages. Logically, the impact of potential antecedents to network development is best observed in a group of individuals brought together into the same setting at the same time. In the past, CNFU has primarily been studied at the individual level. This research contributes by providing a more macro-level view of the influence that CNFU has on individuals’ social networks. Further, this study is among the first longitudinal studies in consumer behavior to track the developmental patterns of a social network. Aside from its theoretical advances, the present study provides a methodological contribution to the marketing field by presenting actor-based modeling techniques to observe the growth and development of networks. The use of an actor-oriented model provides significant advantages over other traditional methods as it is a useful statistical technique for modeling dependencies beyond dyadic relationships (Steglich et al., 2010).

In conclusion, given the lack of research in this area, we recommend exploring other individual characteristics or traits as well as moderators that may differentially influence the development of consumer networks. Further, more research in the area of CNFU is encouraged to uncover its impact on individuals’ network outcomes. Finally, the actor-oriented model presented here may be applied to other areas in marketing to address a variety of network-related questions. Thus, it would be fruitful for researchers to utilize this modeling technique to further extend our discipline’s knowledge of consumer networks.

REFERENCES

