The Illusion of the Illusion of Control

Francesca Gino, Carnegie Mellon University, USA
Zachariah Sharek, Carnegie Mellon University, USA
Don Moore, Carnegie Mellon University, USA

Prior research has found that people confuse skill and chance situations and, as a result, show the illusion of control: they exaggerate probabilities of success by overestimating personal control (Langer, 1975). We question whether this effect is due to bias, and instead suggest that people understandably overestimate how much control they have when actual control is low. By focusing on situations with low control, prior research has created the illusion that people generally overestimate their control. We show that prior effects do not replicate under conditions of high control: when people have high control, they underestimate their control.

[to cite]:

[url]:
http://www.acrwebsite.org/volumes/14188/volumes/v36/NA-36

[copyright notice]
This work is copyrighted by The Association for Consumer Research. For permission to copy or use this work in whole or in part, please contact the Copyright Clearance Center at http://www.copyright.com/.
The Illusion of the Illusion of Control
Francesca Gino, University of North Carolina, USA
Zachariah Sharek, Carnegie Mellon University, USA
Don A. Moore, University of California, Berkeley, USA

EXTENDED ABSTRACT

In the 1970s, New York City installed buttons at intersections with traffic lights. Helpful signs instructed pedestrians: “To cross street, push button. Wait for walk signal.” Pedestrians in New York routinely assume that pushing the button speeds the arrival of the walk signal. As it happens, their faith is misplaced. Since the late 1980s, traffic signals in New York have been controlled by a computer system that determines when the walk signal is illuminated (Luo, 2004). Pushing the button has no effect. But the city has not paid to remove the signs or the buttons, and pedestrians push the buttons anyway. Are they suffering from the illusion of control?

According to Langer (1975), people are suffering from the illusion of control when they behave as if they have control when in fact they do not. Many studies have shown how easy it is to get people to behave as if they think they have control over purely chance outcomes (see Thompson, Armstrong, & Thomas (1998) for a thorough review). These experimental paradigms set up situations like New York City intersections, and then point the finger of bias at people who press the “walk” button when given the chance to do so. But is it any surprise that when people have zero control, they are more likely to overestimate than underestimate their control?

A simpler alternative explanation is that people have an imperfect sense of how much they control probabilistic events—when they have very little control, they tend to overestimate it. This alternative explanation implies the need for an experimental condition that is missing from most research on the illusion of control: A high control condition. If people with no control systematically overestimate their control when they have little because they are unsure about how much control they have, then they should systematically underestimate their control when they have objectively high control. This is the hypothesis we test in our experiments.

In two studies, we manipulated whether control was objectively high or objectively low and asked participants to estimate their control. Our main goal was a critical test of the claim that people generally overestimate their control. As predicted, people overestimated their level of control in the low control condition and underestimated it in the high control condition. These results are consistent with our hypothesis and suggest that people systematically overestimate their control when it is objectively low and systematically underestimate it when it is objectively high.

The first study used a novel paradigm that allowed us to manipulate the actual amount of control participants had over a feature of a task in which they were engaging. The results show that when participants had low control (15%) they tended to overestimate it, but that when they had high control (85%) they tended to underestimate it. The second study replicates this result using the classic button-light paradigm in which participants are given a button that may or may not influence the chances that a light comes on subsequent to them pressing the button. Again, when the button provided them with high control (80%) over the light’s onset, they tended to underestimate that control. When the button provided them with low control (20%) over the light, they tended to overestimate that control.

Our studies offer little evidence of systematic overestimation of control. Indeed, the only circumstance in which we found that our participants overestimated their control was when they had very little and our measure made it difficult or impossible for them to underestimate their control. We offer an alternative account for findings that people overestimate their control when control is low: It is common for people to be uncertain about how much control they have. Consequently, when control is objectively low people tend to overestimate it. By focusing on domains in which people have little control, prior research has created the illusory impression that overestimation of control is more frequent than it actually is.

REFERENCES