Self-positivity bias refers to the tendency of people to consider themselves as more fortunate than others. Although literature shows robust demonstrations of self-positivity, there are no empirically tested accounts of how self-positivity occurs. According to Chambers and Windschitl (2004), self-positivity might arise from biased retrieval of risk information. In the present research, we (a) present a first empirical test of biased retrieval of risk information, and (b) argue that self-positivity begins with biased encoding and biased processing of information. We report three studies examining self-positivity in encoding, processing and recall of risk information in the context of health risk judgments.

[to cite]:

[url]:
http://www.acrwebsite.org/volumes/14661/volumes/v36/NA-36

[copyright notice]:
This work is copyrighted by The Association for Consumer Research. For permission to copy or use this work in whole or in part, please contact the Copyright Clearance Center at http://www.copyright.com/.
Self-positivity in Risk Judgments: The Role of Processing, Encoding, and Recall Biases
Parthasarathy Krishnamurthy, University of Houston, USA
Magdalena Cismaru, University of Regina, Canada

EXTENDED ABSTRACT
Self-positivity bias refers to the tendency of people to consider themselves as more fortunate than others. In the context of health judgments, this illusion of invulnerability can lead to poor choices and unfortunate consequences such as not getting medical attention in a timely manner or becoming obese. Therefore, examining the process may open up ways to manage such biases with important implications for designers of public policy campaigns advocating changes in behavior such as preventing obesity.

Although literature demonstrates self-positivity in a variety of contexts, including health, there are no empirically tested accounts of how self-positivity occurs. According to Chambers and Windschitl (2004), self-positivity might arise from biased retrieval of risk information. In the present research, we (a) present a first empirical test of biased retrieval of risk information, and (b) argue that self-positivity begins with biased encoding and biased processing of information. We report three studies examining self-positivity in encoding, processing and recall of risk information in the context of health estimates.

The principal goal of Study 1 was to assess biased retrieval of risk information. Students participated in 2 (target person) x 2 (order of elicitation) mixed design, with the target person manipulated within-subjects and the order of elicitation manipulated between-subjects. The design, measures, and procedure were based on Menon, Block, and Ramanathan (2002); Menon, Raghubir, and Schwarz (1995); and Raghubir and Menon (1998). Participants were exposed to a series of slides about Chronic Fatigue Syndrome (CFS) that described the condition, the symptoms, the severity, the difficulty of being diagnosed, and the people at risk. Participants then judged their own risk of developing CFS, the risk of an undergraduate student of developing CFS, and the risk-increasing and risk-decreasing factors that they used in providing the risk estimate for each target person (self and the average student). Results show that participants retrieved relatively more risk-increasing factors when the target person was the average person than when it was the self. Mediation analyses indicate that self-other differences in retrieval associated with risk-increasing and risk-decreasing factors mediate the effect of target person on risk estimates, consistent with Chambers and Windschitl’s proposed model (2004) and our expectations.

The goal of Study 2 was to assess whether self-positivity is observed even in the processing of risk-behaviors, and whether such biases lead to positivity in risk-judgments. The online study involved two target persons, self versus average student, administered in two phases separated by a 10-minute distraction task. In phase 1, all participants were exposed to a condensed version of the CFS presentation and then presented with a list of eight behaviors—four risk-increasing (i.e., “eating plenty of fruits, vegetables, whole grains, and beans”) — in regard to one’s chance of developing CFS. Participants in the self-target person condition were instructed to think of these behaviors and to describe themselves performing them, one behavior at a time. Those in the other-target person condition were asked to think of the same behaviors and to describe an average student performing them. Following this, participants were asked to indicate how clearly they were able to visualize the target person (self or average student) engaging in each of those behaviors (imagery). A difference in the clarity of imagery was employed as an indication of information processing. After about 10 minutes or so, in phase 2 of the study, participants generated risk estimates for their assigned phase 1 target. The results from Study 2 suggest that self-positivity is not limited to retrieval, as noted in the three-stage model of Chambers and Windschitl (2004), but extends to processing of information. The same risk-behavior when processed with respect to one’s self is visualized more readily if the behavior is risk-decreasing and less readily if the behavior is risk-increasing. Furthermore, the relative readiness to visualize risk-increasing behaviors (relative to risk-decreasing behaviors) significantly mediates the impact of the target person on risk-judgments.

The goal of Study 3 was to assess whether there are systematic biases in the encoding of risk information. Students participated in an online study with two target persons, self versus average student. They were exposed to a scenario that described oneself or an average student buying a lunch. They were then asked to evaluate the meal’s content of fiber, sugar, whole grains etc., and indicate the extent to which the lunch was healthful, likable, etc. The effect of target on encoding was examined by looking at whether the target person influenced the evaluation of the meal. Results indicate that the target person affects encoding of ingredients, therefore suggesting that self-positivity is not limited to retrieval and processing of information, but extends to encoding of information. In general, participants considered their meal to be lower in undesirable ingredients such as sugar, fat, or calories, and higher in desirable ingredients such as grains and beans in contrast to evaluating the same meal for an average student. These results help extend the Chambers and Windschitl’ model (2004) to include encoding biases as well as retrieval and processing biases documented in Study 1 and Study 2.

Although our findings extend our understanding of the mechanism behind self-positivity bias, identifying ways to manage self-positivity with important practical implications for designers of public policy campaigns remains to be investigated by future work. Specific research questions concern framing the information provided in a way to minimize encoding biases as well as processing biases and further retrieval biases when warranted.

REFERENCES
Menon, Geeta, Lauren G. Block and Suresh Ramanathan (2002). “We’re at as Much Risk as We are Led to Believe: Effects of Message Cues on Judgments of Health Risk”. Journal of Consumer Research, 28 (March), 533-550.