Are McNoodles and McDonald’S Kinship Connected? Effects of Linguistic Information on Consumers’ Categorization of New Products

Dengfeng Yan, Hong Kong University of Science and Technology, China
Allan K. K. Chan, Hong Kong Baptist University, China

This paper examines how consumers process prefixed brand names (e.g., iTunes, iPod, iPhone) from a categorization perspective. Our attention primarily focuses on two category features, which are prefix and product similarity. Results of two studies using real (i.e., McDonald’s) and fictitious brand names as stimuli demonstrate that the likelihood that consumers would consider a prefixed brand name (e.g., McNoodles) as affiliated with a master brand (e.g., McDonald’s) is jointly determined by (1) the diagnosticity of prefix, and (2) the similarity between focal product and master brand. More importantly, prefix which is proposed to be processed earlier was found to be able to bias consumers’ perception of product similarity, lending support to a sequential categorization process model.

[to cite]:

[url]:
http://www.acrwebsite.org/volumes/13525/volumes/v35/NA-35

[copyright notice]:
This work is copyrighted by The Association for Consumer Research. For permission to copy or use this work in whole or in part, please contact the Copyright Clearance Center at http://www.copyright.com/.
Are McNoodles and McDonald’s Kinship Connected?
Effects of Linguistic Information on Consumers’ Categorization of New Products
Dengfeng Yan, Hong Kong University of Science and Technology, China
Allan K. K. Chan, Hong Kong Baptist University, China

ABSTRACT
This paper examines how consumers process prefixed brand names (e.g., iTunes, iPod, iPhone) from a categorization perspective. Our attention primarily focuses on two category features, which are prefix and product similarity. Results of two studies using real (i.e., McDonald’s) and fictitious brand names as stimuli demonstrate that the likelihood that consumers would consider a prefixed brand name (e.g., McNoodles) as affiliated with a master brand (e.g., McDonald’s) is jointly determined by (1) the diagnosticity of prefix, and (2) the similarity between focal product and master brand. More importantly, prefix which is proposed to be processed earlier was found to be able to bias consumers’ perception of product similarity, lending support to a sequential categorization process model.

INTRODUCTION
Consider two brand names: MacNoodles and iDog. What immediately comes to your mind? Will you guess that the MacNoodles is also a kind of fast food? Will you think iDog is an electronic toy which is offered by the Apple Company? The answers might be mixed. These example represent a ubiquitous branding strategy called prefixed branding or linked brand names (Aaker 2004) which has been largely neglected by consumer researchers. The prefixed branding strategy, whereby the new endorsed brand shares a prefix (broadly defined here) with the endorser, is becoming increasingly prevalent among marketers. The motivation of using prefixed brand names is that the prefix can provide a compact but strong link to the endorser. At the same time, the prefixed branding may be better than brand extension because it allows a way to have multiple distinct brands, each with its unique personality and associations (Aaker 2004). Companies adopting this strategy include Apple (iPod, iTunes, iPhone, and iBook) and IBM (now Lenovo) (ThinkPad, ThinkCentre, ThinkVantage, and ThinkPlus).

The research resources devoted to the prefixed branding phenomenon, however, is asymmetrically rare. To maximize the benefits and minimize potential problems (e.g., brand infringement) of this strategy, marketers therefore are eager to understand how consumer process and respond to these prefixed brand names.

The present article is to fill this gap. We propose that the nature of consumers’ processing of prefixed brands is a kind of categorization judgments. Under this theoretical framework, we aim to answer these questions as following: 1) what kinds of prefixes are more effective for prefixed branding, 2) how could a prefix impact on consumers’ categorization of prefixed brand names, and 3) when could prefixed branding elicit more impact on consumers’ judgments?

The article is organized in the following manner: first we present literature pertaining to peoples’ categorization process; we then from an information processing perspective propose a sequential categorization theory modeling consumers’ processing of prefixed brand names; hypotheses will be formulated in this part as well; two experiments are subsequently presented. We conclude with a discussion of the results, implication for categorization research and brand management.

CONCEPTUAL FRAMEWORK
Categorization theory is borrowed to address the question previously raised. We suggest that consumers’ perception and processing of prefixed brand names is a kind of categorization judgment.

Categorization has been one of the most fundamental mechanisms in consumers’ information processing. People are expected to employ such a strategy especially when diagnostic information, such as product performance, is unperceivable (Sujan 1985; for a review, see Loken 2006). Take brand extension for example, when an extension (e.g., popcorn) could be categorized as a typical member of the parent brand (e.g., Coca-Cola), the beliefs and affect associated with the parent brand will transfer to that extension to help consumers quickly form an evaluation (Park, Milberg, and Lawson 1991). Similarity Comparison and Feature Diagnosticity
Psychologists and consumer researchers have proposed many theories (for reviews, see Cohen and Basu 1987; Smith and Medin 1981) to model consumers’ categorization process. These theories share a common assumption that categorization involves a similarity comparison process (Murphy 2002). A number of studies demonstrated that the target item is judged to be a category member if and only if it provides a sufficient match to prototypes or exemplars (Rosch 1978), and a sufficient match requires accumulating a critical sum of feature diagnosticity. In categorization research, feature diagnosticity reflects the accuracy that a feature can predict a category membership (Ahn et al. 2000).

A prevalent model bearing on feature diagnosticity was proposed by Rosch and Mervis (1975). From a family resemblance perspective, the authors suggested that the most prototypical members within a category are those which bear the greatest family resemblance to other members of their own category and have the least overlap with other categories. Therefore, a category feature is most diagnostic when it is shared by in-group members as prevalent as possible, and shared by out-group members as rare as possible. The latter point could be illustrated by persons’ names. For example, George Leonard and Sherry Leonard are more likely to be considered as members of one family, relative to George Smith and Sherry Smith, because as a category feature, “Leonard” is less frequently shared by irrelevant categories, compared to “Smith”, although both are shared by all in-group members within each category.

1Financial support from a faculty research grant (FRG/04-05/II-42) in Hong Kong Baptist University is gratefully acknowledged.
2The MacNoodles is a real case happened in Singapore. In 1995, the FE applied to register “MacChocolate”, “MacTea”, and “MacNoodles” as trademarks in relation to its instant cocoa mix, tea, and noodles. The McDonald’s, however, opposed this registration, arguing that the public will assume that the products may originate from McDonald’s (for details, see Leong and Lwin 2006).
Effects of Prefix and Product Similarity

Property of Prefix. We extend Rosch and Mervis’s (1975) model to investigate consumers’ processing of prefixed names. Firstly, we propose that a prefix is diagnostic to the extent that it is shared by all the members of its own category. Suppose in the Apple’s brand family only a few subbrands begin with the prefix “i” while others do not, consumers would be less likely to activate a connection between the prefix “i” and Apple and subsequently to consider a new prefixed brand name (e.g., iTalk) as affiliated with Apple.

Secondly, Leonard-Smith example implies that the rarer a prefix, the more likely consumers will infer that a new prefixed brand is endorsed by that master brand, and more likely positive attitude associated with the master brand will transfer to the new product. In converse, if the prefix is commonly used by different irrelevant brands, consumers are less confident to judge that a new brand with this prefix has some relationship with that master brand. Thus, suppose a new brand shares the same prefix with a master brand, we hypothesize that:

H1: Consumers are more likely to judge a prefixed brand as endorsed by a master brand if a) many names under the parent brand have the same prefix; b) the prefix is not used by other irrelevant brands.

Product Similarity. Another property of a prefixed brand which could influence categorization result is product similarity. Research bearing on brand extension has robustly established that consumers’ extension evaluation is largely determined by the similarity between extension and parent brand. Aaker and Keller (1990), for example, demonstrated that participants evaluated Haagen-Dazs candy bar much more favorably than Haagen-Dazs cottage cheese ($M_{s}=4.81$ and 3.13, respectively). Similarly, it is straightforward for us to expect that consumers’ attitude toward a prefixed brand will be more favorable if it is in a similar industry as the master brand.

H2: Consumers are more likely to judge a prefixed brand as endorsed by a master brand if this brand is in a similar product category to the master brand.

Some Gaps

Hypothesis 1 and 2 investigate the effects of category features on categorization result independently. How consumers process these different features together remains unclear. Are these features processed simultaneously or piece by piece? Will features interact with each other? If yes, how will they interact?

These unanswered questions reflect some gaps in previous literature. First of all, previous categorization theories considered category features as orthogonal. Psychologists, however, have repeatedly demonstrated that consumers tend to process information in light of previously processed materials. Therefore, it is reasonable to suspect that category features may interact with each other. Secondly, previous categorization studies treated feature similarity as a fixed property and it could always be correctly activated from memory.

A Sequential Categorization Model

To answer these questions, we propose a sequential categorization model modeling consumers’ categorization process from an information processing perspective. Briefly speaking, this model consists of three assumptions: first, we assume that various category features are processes in a sequential manner; secondly, we suggest that such a sequence is determined by the varying perceptibility of different category features; this model lastly proposes that the early processed features can bias consumers’ interpretation of later processes category features, as well as the overall categorization judgment (see figure 1).
Sequential Assumption. Sequential assumption has been widely adopted by information processing literature. Fiske and Neuberg (1990), for example, proposed a continuum model where consumers are theorized to process information in a progressive manner. Specifically, consumer would make an initial categorization immediately after encountering a person on the basis of information that becomes accessible concurrently with the initial perception of target individual. Consumers then may attend to, search, and process additional information under certain conditions and this information will finally be integrated with initial judgment. Research on information presentation order also provided substantial support to the sequential assumption (e.g., Bettman et al. 1988).

Perceptibility: A Determinant of Processing Sequence. Under the framework of sequential processing, how to determine the processing sequence becomes a crucial question. To answer this question, we introduce a concept of feature perceptibility which refers to the readiness of being processed (Bruner 1957). This concept comes from the distinction between perceptual and conceptual information. Perceptual features refer to those features which could be directly perceived by our sensory system, such as shape and color, whereas conceptual features are those semantic features which are more abstract and convey a deeper understanding of the category (John and Sujan 1990).

Information of different perceptibility varies in many ways. One of the most fundamental difference is that compared with less perceptual features, more perceptual features are much easier to process and will require less cognitive effort which is limited in capacity. On the basis of this difference, we propose that more perceptual features should be processed in prior to less perceptual features. This assumption is in line with the cognitive economy assumption which holds that low-effort processing mode is the “default processing mode” of consumer’s cognition (Smith and DeCoster 1999), and people will process in this way unless special circumstances intervene (p. 324).

In many situations information could hardly be absolutely labeled as perceptual or conceptual, this research holds that perceptibility is a matter of degree. Different category features will be differentiated as of more and less perceptibility. Under the context of prefixed brands, we suggest that prefix is more perceptual information which could be easily received and processed by consumers while product similarity is a kind of conceptual information, the processing of which requires more cognitive resources.

The Interplay of Prefix and Product Similarity. The sequential processing assumption brings out another important issue: is consumers’ processing of different features a statically additive or instead a dynamically interactive process? Our model suggests an interaction effect between two types of category features. Psychological literature bearing on primacy effect (Lingel and Ostrom 1979) and hypothesis testing theory (e.g., Snyder et al. 1979) suggest that consumers would form their hypotheses on the basis of first processed information or previously held beliefs, and these hypotheses bias their interpretation of subsequent information. Just following this research line, we suggest that consumers would like to form an initial judgment immediately after seeing prefixed names. This is similar to the stage of initial categorization proposed by Fiske and Neuberg (1990). This initial categorization can operate in much the same way as hypotheses, expectations, or current concerns (Yeung and Wyer 2004). In specific, if consumers hypothesize something, they are more likely to looking for evidences to confirm it, neglecting other contradicting information. They will selectively interpret evidences to support their hypotheses and could even “see” what does not exist (i.e., illusionary covariation; see Nickerson 1998, for a review of “confirmation bias”). In our research, for example, if someone is convinced by the “Mc” prefix that a Chinese restaurant named “McChina” is introduced by McDonald’s, s/he will argue that both Chinese restaurant and Western fast food are in the same food industry. On the contrary, if individuals think that the “Mc” prefix could be seen everywhere and can not serve as a reliable indicator of McDonald’s, they are more likely interpret Chinese food and Western fast food as two totally different things. Previous literature (for a review, see Nickerson 1998) also suggests that such a confirmation bias is more likely to occur if subsequently processed information is ambiguous and thereby is open to multiple interpretations. More formally,

H3: The overall classification judgments will be biased toward consumers’ initial judgments about prefix diagnosticity. This effect is mediated by consumers’ biased estimation of product similarity and will be moderated by the ambiguity of product similarity. In specific, the more ambiguous the product similarity, the more significant such an interaction will be.

STUDY 1

Method

Sample and Design. Study 1 was designed to test hypothesis 1a, hypothesis 2, and hypothesis 3, and employed a 3 (prefix diagnosticity: high vs. low vs. control) X 3 (product similarity: dissimilar, moderately similar, vs. similar) X 3 (prefix condition: Mc, McC, Mcs) factorial design. Participants were 221 undergraduate students of a middle-aged university in Hong Kong. They were randomly assigned to those nine conditions.

Stimuli and Procedure. The first independent variable of this study is prefix diagnosticity, which could be operationalized in two ways according to hypothesis 1a and 1b. We used McDonald’s which is well-known among subjects as a stimulus. Under the McDonald’s umbrella, many of its prefixed brands (McChicken, McKids, McMuffin, and McEggs) have a prefix of “Mc”, but a few (MacFries) may not. In this occasion, we inferred that Mc is more diagnostic than Mac. Accordingly, subjects in the high diagnostic prefix condition would be exposed to a new brand name which has a prefix of Mc, while those in low diagnostic prefix condition received brand names beginning with Mac.

Product similarity, another important independent variable, was manipulated on the basis of pretests. Three product categories, such as rice burger, noodles, and chocolate, were selected to represent high, moderate, and low similarity (Ms=.423, .365, and .277, p<.01).

Subjects in the six experimental groups were informed that the research was designed to understand their opinion toward a forthcoming product (e.g., McNoodles). “According to inside information, a new kind of product (e.g., instant noodles) named McSomething (e.g., McNoodles) will soon be available on the Hong Kong market. In your mind, how likely is this McSomething produced by or affiliated with McDonald’s”? Subjects were required to rate the likeability on a seven-point scale, ranging from 1 (very likely) to 7 (very unlikely). After that three items (adopted from Aaker and Keller 1990; α=.77) were used to measure their perceived product similarity between new product (e.g., instant noodles) and McDonald’s hamburger. Subjects then were asked to judge the persuasiveness or diagnosticity of specific prefix, to rate their overall attitude toward McDonald’s, as well as the familiarity with these products. In the control group where no prefix was presented, subjects were required to rate product similarity and other dependent variables.
Results

Manipulation Checks. In order to check our manipulation of product similarity, we calculated the difference of similarity judgments among three groups. The result demonstrated that participants’ perceived product similarity was significantly influenced by the manipulation (Ms=2.89, 3.70, and 4.41, respectively, F (2, 221)=36.65, p<.0001). This implies that our manipulation in this experiment was successful. Similarly, the difference between prefix persuasiveness is significant as well (p<.05).

Effects of Prefix and Product Similarity on Categorization Judgment. Hypothesis 1 and 2 predict two main effects of prefix diagnosticity and product similarity on categorization judgments: high prefix diagnosticity and product similarity each will independently increase the possibility that consumers would consider a new prefixed brand as affiliated with a master brand. The pattern of means is consistent with this prediction, as shown in figure 2. The differences between these means are significant, as for prefix diagnosticity, Ms=3.64 vs. 4.16, F (1, 146)=3.66, p<.06; as for product similarity, Ms=2.90, 3.80, and 5.00, respectively, F (2, 146)=20.97, p<.0001. The outcome therefore supports our hypotheses that both prefix and product similarity can impact on consumers’ categorization of a new prefixed brand.

Testing Interaction Effect. We also predicted an interaction between prefix diagnosticity and product similarity, with the effect of prefix being greater when product similarity was ambiguous to judge. The results of ANOVA demonstrates that the interaction between prefix diagnosticity and product similarity is significant, confirming our interaction hypothesis (F (2, 146)=3.93, p<.03, see table 1). As we suggested, such an interaction effect was caused by confirmation bias where consumers’ interpretation of later processed information is usually biased toward these earlier processed materials. Such a confirmation bias is very likely to happen when later processed information is unclear or uncertain and thereby open to multiple interpretations. Specific to this research, consumers’ interpretation of product similarity is expected to be biased toward consumers’ judgment about prefix, especially when product similarity is ambiguous. To examine this mediating interpretation, three one-way ANOVAs were performed. The result showed that such a biased interpretation of product similarity really happened in the ambiguous condition (i.e., noodles), but not in other two extreme conditions (i.e., chocolate and rice burger). As shown in figure 3, consumers’ perceived similarity between noodles and hamburger was improved when prefix diagnosticity increases (Ms=3.13, 2.63, and 3.70, respectively), and such a difference was significant (F (2, 70)=4.18, p<.02).

Therefore, hypothesis 1a and hypothesis 2, together with its underlying mechanism (H3), are all supported.

Discussion

Generally our hypotheses are all empirically supported, yet we realized that using real brand names (i.e., McDonald’s) as stimulus has some problems.

Firstly, the categorization process usually includes a retrieval procedure which could not be controlled in study 1. After seeing the Mc prefixed brand names such as McNoodles, various brand names may come to different subjects’ brains. For example, some one may activate brand names like McChiken and McMuffin which are quite similar to noodles; some subjects on the other hand, may activate something like McKids which is a less typical product under the Mc prefix. Although we explicitly reminded participants to make their interpretation of product similarity really happened in the ambiguous condition (i.e., noodles), but not in other two extreme conditions (i.e., chocolate and rice burger). As shown in figure 3, consumers’ perceived similarity between noodles and hamburger was improved when prefix diagnosticity increases (Ms=3.13, 2.63, and 3.70, respectively), and such a difference was significant (F (2, 70)=4.18, p<.02).

Therefore, hypothesis 1a and hypothesis 2, together with its underlying mechanism (H3), are all supported.

In addition, we also noticed that using real brand names may also influence subjects’ perceived diagnosticity of prefixes. In our study 1, we assume that consumers would perceive Mc as more diagnostic than Mac since the latter is less widely shared within the McDonald’s category. That is, only very few brands such as MacFries use the Mac prefix whereas the remaining majority all begin with the prefix of Mc. However, the actual retrieving may not be the case since McDonald’s many products are named in Chinese in the Hong Kong market. Therefore, Hong Kong subjects may not be aware of those brand names and their difference as we predicted. To solve these problems, the second study was conducted where hypothetical brand names were created and used, thereby minimizing the uncertainty of subjects’ information activation.
STUDY2

The biggest difference between study 1 and study 2 is the stimuli. We created a series of hypothetical prefixed brand names to manipulate the diagnosticity of prefixes as well as the level of product similarity. This approach allows us to test hypothesis 1b.

Method

Sample and Design. The design of study 2 is actually the same as that of study 1. 221 undergraduates participated this study and they were randomly assigned to nine conditions according to a 3 (prefix diagnosticity: high vs. low vs. control group) X 3 (product similarity: dissimilar, moderately similar, vs. similar) experimental design. Subject number of each cell size ranges from 23 to 25. All nine experimental conditions and three control conditions were administered simultaneously.

Stimuli and Procedure. The most challenging part of testing hypothesis 1b is to identify or create a pair of prefixes with different uniqueness levels. In specific, less frequently used prefix will be considered as more diagnostic and thereby would elicit more effect on consumers’ perception of prefixed brands. However, choosing different kinds of prefixes may bring confounding variables. Take Nest- (e.g., Nestea) and Micro (e.g., Microsoft) for example, the first prefix is more unique and thus of higher diagnosticity compared to the latter. However, it is widely documented that the meaning of brand names can influence consumers’ brand evaluation and judgment. If we use such pairs of prefixes as stimuli, it may be difficult for us to exclude that confounding effects from our predicted effects. Similarly, the sound of brand name can also play an important role in consumer information processing (e.g., sound symbolism).

We finally found out a pair of prefixes (i.e., Xtra- and Extra-) which don’t have previous mentioned problems. Xtra and Extra share the same meaning and pronunciation, thus we can rule out many confounding factors. The only obvious difference between “Extra-” and “Xtra-” is their frequency. In specific, “Extra-” is more widely used whereas the usage frequency of “Xtra-” is much lower. Therefore, the prefix diagnosticity would be manipulated. Pretest confirmed their different uniqueness level (Ms=5.2 and 3.5, $p<.001$).

Subjects were told that XtraTech (or ExtraTech) is a famous personal computer brand in a foreign country. Suppose recently there is a new product (e.g., bicycle) named ExtraSomething/ XtraSomething (e.g., XtraSpeed) is available on the market. Different products (i.e., bike, telephone, and printer) were used to represent different product similarity levels (Ms=2.34, 2.72, and 4.34, $p<.001$). After receiving this information, subjects were asked to judge the extent to which they believe this newly introduced

![Figure 3: The Biasing Effect of Prefix on Product Similarity Estimation in Study 1](image)

![Table 1: The Results of Two Anovas](table)

<table>
<thead>
<tr>
<th>Factors</th>
<th>Study 1 (N=146)</th>
<th>Study 2 (N=146)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix diagnosticity</td>
<td>3.58 .060</td>
<td>4.14 .044</td>
</tr>
<tr>
<td>Product similarity</td>
<td>20.33 .000</td>
<td>16.71 .000</td>
</tr>
<tr>
<td>Prefix diagnosticity * product similarity</td>
<td>3.93 .021</td>
<td>2.91 .058</td>
</tr>
<tr>
<td>Gender</td>
<td>.00 .981</td>
<td>.43 .51</td>
</tr>
<tr>
<td>Age</td>
<td>.62 .433</td>
<td>.00 .96</td>
</tr>
<tr>
<td>R2</td>
<td>.284</td>
<td>.250</td>
</tr>
</tbody>
</table>
product was produced by the XtraTech (or ExtraTech) company on a 7-point scale. They were asked to estimate product similarity and prefix uniqueness as well.

Results

Manipulation Checks. In order to check our manipulation of product similarity, we calculated the difference of similarity judgments among three groups. The result demonstrated that participants’ perceived product similarity was significantly influenced by our manipulation \((M_s=2.36, 3.60, 4.31, \text{ respectively, } F(2, 202)=52.05, p<.001)\). Our manipulation of prefix uniqueness was successful as well \((M_s=4.01 \text{ and } 3.14, F(1, 146)=15.05, p<.001)\). Moreover, both independent variables were not influenced by other factors \((p>.10)\).

Hypotheses Testing. The ANOVA was used to test all the hypotheses. If our hypotheses are valid, both prefix diagnosticity and product similarity should have effects on consumers’ categorization judgments. The data is consistent with such prediction (see figure 4). The differences between these means are significant \((p<.05)\).

In addition, in the ANOVA task (see table 1), we found a marginally significant interaction between prefix uniqueness and product similarity on categorization judgment \((F(2, 146)=2.91, p<.06)\). That is, when product similarity is moderate and thus ambiguous to estimate, consumers’ overall categorization judgment would be biased toward their initial perception of the prefix per se which is usually processed at the first glance. As suggested by our model, this interaction is contributed by biased estimation of product similarity. To test this, the effect of prefix diagnosticity on product similarity was submitted to three one-way ANOVAs with prefix diagnosticity as a predictor. Consistent with our predictions, the ANOVA revealed that consumers’ report of similarity between computer and telephone was significantly impacted by prefix uniqueness \((M_s=2.92, 3.18, \text{ and } 4.22, \text{ respectively; } F(2, 73)=9.09, p<.0001)\) and such effect was not found in other two conditions (i.e., bike and printer) \((p>.10)\) (see figure 5).

GENERAL DISCUSSION

To conclude, our three hypotheses have been supported in two studies where real brand and hypothetical brand were used as stimuli respectively. The data demonstrated that prefix, as a kind of linguistic feature, could influence consumers’ categorical judgment in two ways. Firstly, consumers’ categorization of new products could be directly influenced by linguistic information. This lends further support to Schmitt and Zhang’s (1998) finding where the authors found that Chinese and Japanese consumers’ categorization are significantly influenced “classifier words”. Secondly, consumers’ perception of product similarity could be molded by linguistic information. Further research is needed to investigate the relationship (cooperative vs. competing) between linguistic-based categorization and product feature/similarity based categorization.

The theoretical contribution of this research is to introduce information processing factors to the traditional categorization framework. Traditional categorization research focused on the diagnosticity of category features, while paying less attention on the information processing factors which could influence or even determine the categorization result. This article shows that introducing information processing factors in categorization research could enable a richer understanding of the actual mechanism underlying consumers’ classification judgments.

Managerially, the present research also has important implications. First of all, this research will offer guidance for those brand managers who plan to employ a prefixed branding strategy to leverage their brands. A good prefix, according to my article, should not be widely used by irrelevant brands. Otherwise, it could not build a strong link between the new brand and endorser. In addition, this research suggests that those prefixed brands may not necessarily be constrained in similar product classes, given the prefix per se is very unique. Similarly, these findings could be extended to trademark infringement and public policy domain. The result of this article suggested that jurors and policy makers may need to adjust their current practice where product similarity is treated as an objective property (e.g., Nice Classification).

REFERENCES

Advances in Consumer Research (Volume 35) / 347

