Investigating the Effects of Consumer Innovativeness on Shape of Consideration Sets: Focusing on Comparison Between Consideration Sets of Innovators and Non-Innovators

Heonsoo Jung, Konkuk University
Wooyang Kim, Konkuk University

ABSTRACT - This study investigated the effects of consumer innovativeness on brand consideration behavior. Specifically, we hypothesized that the shape (size and composition) of the consideration set is different between innovators and non-innovators: innovators' consideration sets are smaller in size and include more homogenous brands than non-innovators'. As expected, experimental results support our hypotheses. Regarding the probability of consideration of two similar brands, our study implies that the simultaneous consideration phenomenon would also be observed at the consumer segment level.

[to cite]:

[url]:
http://www.acrwebsite.org/volumes/9082/volumes/v32/NA-32

[copyright notice]:
This work is copyrighted by The Association for Consumer Research. For permission to copy or use this work in whole or in part, please contact the Copyright Clearance Center at http://www.copyight.com/.
Investigating the Effects of Consumer Innovativeness on Shape of Consideration Sets: Focusing on Comparison between Consideration Sets of Innovators and Non-innovators

Heonsoo Jung, Konkuk University
Wooyang Kim, Konkuk University

ABSTRACT
This study investigated the effects of consumer innovativeness on brand consideration behavior. Specifically, we hypothesized that the shape (size and composition) of the consideration set is different between innovators and non-innovators: innovators’ consideration sets are smaller in size and include more homogeneous brands than non-innovators. As expected, experimental results support our hypotheses. Regarding the probability of consideration of two similar brands, our study implies that the simultaneous consideration phenomenon would also be observed at the consumer segment level.

INTRODUCTION
Although researchers are increasingly recognizing the importance of the consumer consideration set for marketers (Hauser and Wernerfelt 1990; Roberts and Lattin 1991, 1997; Lapersonne, Laurent, and Le Goff 1995; Mitra 1995; Nedungadi 1990; Jedidi, Kohli, and DeSarbo 1996), little is known about the brand consideration behavior of various consumer segments. What draws the interest of marketers regarding consideration behavior is the consumer characteristics that have an influence on the properties of consideration set (e.g., size or composition). Although researchers in marketing only now are beginning to investigate this issue (Lapersonne et al. 1995; Mitra and Lynch 1995), the effects of many consumer characteristics are not discovered yet. Especially, little is known about consumer innovativeness that has gained a considerable amount of interest by high-technology marketers recently.

This study investigated how the characteristics of consideration sets of innovators and non-innovators differ. Specifically, we examined whether the shape (size and composition) of innovators’ consideration sets is different from that of non-innovators.

CONSIDERATION SET AND CONSUMER INNOVATIVENESS

Consideration Set
Consumers generally make a consideration set by selecting products that are expected to provide considerable utility to them among products recognized. The previous studies on consideration sets demonstrated that consumers do not consider all possible brands available in the market to reduce the burdens of evaluating alternatives (Payne 1976; Wright and Barbour 1977; Park 1978; Lussier and Olshavsky 1979; Ratchford 1982). Hauser and Wernerfelt (1990) and Roberts and Lattin (1991), which have described cost-benefit models of the consideration set and, in particular, Hauser and Wernerfelt (1990) and Roberts and Lattin (1991), have a considerable amount of interest showed how consumers make their decision to form brand consideration set. They developed cost-benefit models of the consideration set and, in particular, Hauser and Wernerfelt (1990) and Roberts and Lattin (1991), two major streams of consideration set studies have evolved.

First, several researchers incorporated the consideration set concept into a choice model in order to improve the predictability of their models (Siddarth, Bucklin, and Morrison 1995; Andrew and Srinivasan 1995; and Bronnenberg and Vanhonacker 1996). Second, other researchers investigated the consideration set itself as a main research issue. Lapersonne et al. (1995) found that in the French automobile market twenty-two percent of consumers consider only one product. Mitra (1995) showed that advertising increases the stability of the consideration set. Also, Mitra and Lynch (1995) searched for factors determining the size of the consideration set and found that the size of the consideration set can be increased or decreased depending on the type of advertising. Reflecting on Roberts and Lattin (1991), Roberts and Lattin (1997) pointed out the four major areas that deserve future research regarding consideration sets: (1) dynamics of product consideration, (2) the shape of consideration sets, (3) retrieval and recall of products, and (4) characteristics of products and consideration probability.

The Shape of Consideration Set
Studies on the shape of the consideration set largely focus on the “similarity of products included in the consideration set and the size of the consideration set.” Hauser and Wernerfelt (1990) argued that consideration possibilities of products are independent, but Roberts and Lattin (1991) found that simultaneous consideration possibility is high in similar products from the analysis of the cereal market.

The literature about the economic information value (Hilton 1981; Mandeville 1998) indicates that heterogeneous products are likely to be included in the consideration set of consumers with high uncertainty about product information. According to the literature, when uncertainty is high, a consumer includes various possible brands to prevent the chance of excluding highly effective brands from his/her consideration set. Lapersonne et al. (1995) pointed out that satisfaction for car and dealer, perceived risk, product feature, and demographic factors could affect the shape of the consideration set. They found that only the probability of making a mistake had a significant effect on the size of the consideration set among involvement items like high interests, high symbolic value, high hedonic value, risk importance, and the probability of making a mistake. According to this, if there is a high probability of making a mistake with one’s choice, he/she is likely to consider a larger number of brands.

Consumer Innovativeness
Consumer innovativeness means the degree of early acceptance of innovation of one member than by others in a society (Assael 1995). That is, this is about how fast and easily consumers accept new things, and the reason for the importance of consumer innovativeness is that it has a large influence on the adoption of new product and adoption speed (Midgley and Dowling 1978; Foxall 1988; Hirschman 1980).

The major problem of research on consumer innovativeness centers on the fact that almost all of the previous studies concentrated on investigating the measurement and characteristics of innovativeness. Rogers (1962) defined innovativeness as “the degree to which an individual in a society system adopts innovation before others adopt innovation.” He divided individuals into innovator, early adopter, early majority, late majority and laggard according to the speed of acceptance of a new product, which separately is 2.5%, 13.5%, 34%, 34% and 16% of the total population. Midgley and Dowling (1978) defined innovativeness as “a person’s sensitivity to new ideas” and called it “innate
innovativeness.” According to this study, innovativeness is a general concept and it affects new product adoption through a mediating variable (e.g., product category-specific innovativeness). Hirschman (1980) suggested the novelty seeking as another variable to heavily influence the adoption of a new product, and found that the concept is hardly separable from the innovativeness concept of a consumer. Goldsmith and Hofacker (1991) defined innovativeness as “the intention to try new things” and suggested that innovativeness should be measured related to specific products, because it is not right to measure innovativeness as a general concept in the domain-specific occurrence of the buying situation.

The previous studies on consumer innovativeness have mainly focused on the definition and measurement of innovativeness and there are few studies that investigate the relation of innovativeness with other consumer behavior variables. With this point of view, we explored the relationship between consumer innovativeness and the shape of his/her consideration set.

Consumer Innovativeness and Shape of Consideration Set

Because there are no previous studies that directly tackle the relationship between consumer innovativeness and product consideration behavior, we first refer to the studies that examined the relations with a consumer’s other characteristics (not innovativeness). Laperonse et al. (1995) found that, when the perceived probability of mistakes in choice is high, consumers include many brands in the consideration set to reduce the risk. Generally, non-innovators have less expertise on the product category of concern compared to innovators. Thus, they may think that they have a high probability of making a mistake in their choice, which makes it a bigger possibility to possess many brands in their consideration set compared to innovators.

This prediction is also supported by Mitra and Lynch (1995). They showed that advertising provides varied product information to consumers and accordingly makes the consumer’s preference more sophisticated, which decreases the size of the consideration set indirectly. In the consumer analysis of fashion products, Goldsmith and Flynn (1992) found that innovators obtain more information from and watch more mass communicated advertising like magazines and TV advertising compared to non-innovators. Because innovators are more influenced by mass-media advertising than non-innovators (Rogers 1962), innovators are more likely to include less products in consideration set than non-innovators. This prediction is further supported by the notion of quality expectation. Because of the extremely high quality level required by innovators, relatively fewer products meet their requirement compared to non-innovators. Products in a market vary in quality levels and characteristics. Among them, a small group of products will satisfy the high expectation level of innovators. Therefore, Hypothesis 1: The size of the consideration set of innovators is smaller than that of non-innovators.

RESEARCH METHOD

To empirically test the three hypotheses, we prepared two experimental sessions. The details of each session are as follows: Session 1: Test of Hypotheses 1 and 2.

To empirically test hypotheses 1 and 2, we first divided the subjects into two groups based on their innovativeness scores and conducted an independent sample t-test to show the difference of size and similarity of the consideration sets between the two groups. In session 1, an experimenter informed the subjects that the intent of this study was to find out the consumer purchase behavior of laptop computers and cellular phones. Then the experimenter presented the description of five brands for each product category to the subjects. Then they were asked to assume that they needed to purchase both product categories and answer which brands they would consider to purchase. In addition, they were asked to evaluate the similarity of five brands that were presented to them in a paired comparison manner. Finally, they chose one brand for purchase and answered questions regarding innovativeness and demographic traits.

Session 2: Test of Hypothesis 3.

Because consumers consider brands with higher utility, the considered brands may well reflect the consumer’s preference structure. Thus, if a consumer values product attribute A more than attribute B, brands possessing the strong attribute A will be more likely to be considered by the consumer. Accordingly, we can test hypothesis 3 by comparing the preference structure of the innovator and non-innovator groups. If hypothesis 3 is true, the attribute importance measures of the innovator group will center on key attributes, while those of the non-innovators will be spread evenly.

Hypothesis 2: The composition of consideration set of innovators is more homogeneous than that of non-innovators.

Hypothesis 3: Innovators make homogeneous consideration sets with similar brands in terms of key product attributes, while non-innovators make consideration sets with various brands representing their own strong attributes.
among all attributes. To identify the subjects’ preference structure, we ran a conjoint experiment.

Subjects in the conjoint task saw 16 profiles for each product category and revealed their preference. As soon as they finished the conjoint task, they answered questions regarding consumer innovativeness and demographic traits. Using their evaluations we computed part-worths and obtained the attribute importance distribution for each subject. Then, we compared whether the distributions were different between the innovators and non-innovators, as suggested. An independent sample t-test was conducted for testing hypothesis 3.

Innovators vs. Non-innovators

According to Rogers (1962), about 2.5% of consumers are innovators. If we divide all the subjects into innovators and non-innovators according to this criterion, the size of the innovator group is too small to obtain sufficient number of subjects for the group. Therefore, we combined innovators and early adopters and treated them as an innovator group. In this case, the rate of the innovators group came under 16% of the total consumers and non-innovators are made up of 84% of consumers. To classify subjects into innovator and non-innovators we first rank ordered subjects with respect to innovativeness scores and selected the top 16% of the subjects for innovators. For the non-innovator group, we randomly selected the same number of subjects from the remaining subjects.

Subjects

College students, who are enrolled in a business course in a major university located in Seoul, Korea, participated in these experiments. 170 students participated in an experiment for hypothesis 1 and 2 testing, among them 150 valid samples were used for analysis. Another 160 students participated in the conjoint experiment, and 148 valid samples were used to obtain conjoint part-worths.

Products

Because the subjects of this study were college students, “laptop computers” and “cellular phones” were chosen as the stimulus products that are usually of particular interests to them. According to Hauser and Wernerfelt (1990), when the whole set consists of 6–47 brands, the maximum size of the consideration set is about 7 brands. Thus, we presented 5 brands per product category, considering the evaluation burden of the subjects.

In the experiment, before asking for the product evaluation by subjects, the experimenter screened whether they understood each described product attribute adequately. Ratneshwar, Shocker, and Stewart (1987) mentioned that brand names included in the consideration set could have an influence on the choice and evaluation of other products. To avoid this influence, brand names were excluded and only the product attributes were described and presented. To increase the reality of the experiment, a description of products was made up in reference to real brands in the current market.1 The presented products were evenly included in terms of quality level close to a uniform distribution from the best level to the bottom level, and represented various product attributes. Products for hypothesis 3 testing are likewise laptop computers and cellular phones, but the representative product attributes and levels were defined according to the standard procedure of conjoint analysis and 16 independent profiles among all possible profiles were chosen using the Marketing Engineering software program (Lilien and Rangaswamy 2003).

Measurement

For the measurement of brand consideration, we drew on Laperonne et al. (1995). We asked the subjects to choose all the brands they would consider to purchase among the presented brands. The number of considered brands for each subject was then obtained by counting the number of brands chosen by answering this question. Regarding similarity measure, a paired comparison between brands was used and subjects answered on a 5-point interval scale to the question of “Evaluate the similarity between the following paired brands.” Based on the evaluation, the similarity score of the consideration set for each subject was calculated following equation (1). If only one brand was considered, the case was excluded from the score calculation because it was impossible to compute the similarity for only one brand.

\[
\text{Similarity score of all consideration set } = \frac{\sum_{i,j ; i \neq j} n (a_i, b_j)}{n} \quad \text{--------- (1)}
\]

where, \(n\): total number of pairs, \((a_i, b_j)\): similarity score of brand i and brand j, i, j: subject’s considered brands

For testing hypothesis 3, we developed a skewness measure as shown in equation (2).

\[
\text{Skewness score of attribute importance weights } = \frac{\sum_{i=1}^{n} (a_i - \bar{a})^3}{n} \quad \text{--------- (2)}
\]

Where,
\(n\): total number of product attributes,
\(a_i\): attribute importance weight of attribute i,
\(\bar{a} = \frac{\sum_{i=1}^{n} a_i}{n}\): (if the total number of attributes is 5, then \(\bar{a} = 20\))

If all product attributes are equally important, then the skewness measure is zero. As the importance of some attributes increases, the value of skewness measure increases.

For the measurement of “innovativeness,” we used the question items of “general innovativeness items” and “domain-specific (product-specific) items” from the ACR Handbook of Marketing Scale.2 Innovativeness scores for the subjects were the average scores of all the question items. One innovativeness measurement item was described in the opposite direction to check the reliability of answer. The subjects were asked to reveal their ratings of conjoint profiles on 7-point interval scales.

RESULTS

Reliability Test

Because consumer innovativeness is a major concept of our study, we checked the reliability of the innovativeness measurement items. The results of the reliability test show that our measure-

1The products and product attributes were selected/composed in reference to Internet shopping mall site www.danawa.com and www.empas.com. We also consulted with sales people of major appliance stores regarding brands and important product attributes.

2We referred to Leavitt and Walton(1998) for the general innovativeness scales, while we used the scales of Goldsmith and Hofacker (1991) for the domain-specific innovativeness.
ments are reliable. As shown in Table 1, Cronbach’s alpha values for product-specific innovativeness and general innovativeness items are .8843, .7718 and .5463, respectively, which indicate high levels of reliability. Furthermore, the reversed measurement item shows a significantly high correlation with the other measurement items (6 out of 8 correlations are significant at the 5% significance level).

Quality Distribution of Products
In our study, we devised five stimulus brands for each product category close to a uniform distribution, from top to bottom. However, because the quality distribution of brands may affect the results of our hypothesis testing, we checked the uniformity of quality distribution. In our experiment, we asked which brand they would purchase finally. If the presented brands are close to being uniform, we may expect that more innovators will choose (buy) upper level brands, while the opposite is true for non-innovators. The results confirm our expectation.

Results of Hypotheses 1 and 2
For testing hypotheses 1 and 2, we divided the subjects into innovators and non-innovators and then tested whether (1) the size of consideration set of the innovators was significantly smaller than that of the non-innovators and (2) the innovators’ considered products were significantly more homogeneous. We examined the difference between the two groups by an independent sample t-test.

As shown in Table 2 and Table 3, overall, we see that the average size of the consideration set of innovators is smaller than that of non-innovators. But, when we divided the subjects with the general innovativeness scores, the difference between the two groups was not significant at the 5% significance level (cellular phone p=.091, laptop computer p=.601), while significant differences for laptop computers and cellular phones existed at the 5% level in the case of the separation of two groups with the product-specific innovativeness scores (cellular phone p=.000, laptop computer=.000). Therefore, hypothesis 1 is accepted when consumer innovativeness is measured by the product-specific innovativeness scales.

Regarding hypothesis 2, as shown in Table 4, when groups are classified with the general innovativeness scores, the consideration sets of innovators are more similar than those of non-innovators, but, not significant at the 5% significance level (laptop computer p=.526, cellular phone p=.373). However, as shown in Table 5, when groups are classified with the product-specific scores, consideration sets of innovators for laptops and cellular phones have a significantly larger similarity than those of non-innovators (laptop

TABLE 1
Reliability Coefficient of Innovativeness Measurement Items

<table>
<thead>
<tr>
<th>Variables</th>
<th>Number of Measurement Item</th>
<th>Cronbach’s α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product-specific innovativeness (Laptop computer)</td>
<td>6</td>
<td>.8843</td>
</tr>
<tr>
<td>Product-specific innovativeness (Cellular phone)</td>
<td>6</td>
<td>.7718</td>
</tr>
<tr>
<td>General innovativeness</td>
<td>24</td>
<td>.5463</td>
</tr>
</tbody>
</table>

TABLE 2
Size Difference of Consideration Set (general innovativeness scores)

<table>
<thead>
<tr>
<th>Classification according to general innovativeness scores</th>
<th>Number of cases</th>
<th>Mean</th>
<th>S.D.</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laptop Computer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innovators</td>
<td>24</td>
<td>2.25</td>
<td>.5647</td>
<td>.526</td>
<td>.601</td>
</tr>
<tr>
<td>Non-innovators</td>
<td>24</td>
<td>2.333</td>
<td>.5326</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellular Phone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innovators</td>
<td>24</td>
<td>2.13</td>
<td>.99</td>
<td>1.727</td>
<td>.091</td>
</tr>
<tr>
<td>Non-innovators</td>
<td>24</td>
<td>2.63</td>
<td>1.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3
Size Difference of Consideration Set (product-specific innovativeness scores)

<table>
<thead>
<tr>
<th>Classification according to product-specific innovativeness scores</th>
<th>Number of cases</th>
<th>Mean</th>
<th>S.D.</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laptop Computer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innovators</td>
<td>24</td>
<td>1.88</td>
<td>.68</td>
<td>5.557</td>
<td>.000</td>
</tr>
<tr>
<td>Non-innovators</td>
<td>24</td>
<td>3.00</td>
<td>.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellular Phone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innovators</td>
<td>24</td>
<td>1.71</td>
<td>.91</td>
<td>3.92</td>
<td>.000</td>
</tr>
<tr>
<td>Non-innovators</td>
<td>24</td>
<td>2.71</td>
<td>.86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Investigating the Effects of Consumer Innovativeness on Shape of Consideration Sets

To further test our hypotheses, we ran a multiple regression. As shown in Table 6, the results support hypotheses 1 & 2. The product-specific innovativeness has significant effects on both size and similarity of consideration sets.

Results of Hypothesis 3

In hypothesis 3, we hypothesized that innovators consider similar products with strong key attributes, and, on the other hand, non-innovators include various products with each product’s own strong attributes into their consideration set. We tested hypothesis 3 by comparing the attribute importance distribution of innovators and non-innovators. As shown in Table 7, the t-test results, using the skewness measure (equation 2), show that the attribute importance distribution of innovators is more skewed towards key attributes than that of non-innovators. However, the difference is significant at the 5% significance level for cellular phone only (laptop computer p=.545; cellular phone p=.000). To check further, we performed MANOVA about the simultaneous differences of the attribute importance weights between the two groups. The difference is significant at the 5% significance level for cellular phones only (laptop computer F=9.65, p=.084; cellular phone F=5.03 p=.001). Therefore, hypothesis 3 is accepted for cellular phones only.

Although both innovators and non-innovators equally put considerable weight on the price for cellular phones, innovators put a concentrated weight on “LCD resolution.” On the other hand, non-innovators put a considerable weight on the other attributes, such as “digital camera” and “talk time and standby,” etc.

CONCLUSION, IMPLICATION AND LIMITATION

This study investigated the influence of consumer innovativeness on his/her consideration behavior. We compared the shape of the consideration set between innovators (high-tech marketers’ major target customers) and non-innovators.

The results of hypotheses testing showed that innovators form a smaller size of consideration set and put more similar products into their consideration set as we expected. In addition, the test results of hypothesis 3, comparing the attribute importance distributions, showed that innovators put more weights towards key attributes, which implies that they are more likely to consider brands with strong key attributes. In light of Roberts and Lattin (1997) and Hauser and Wernerfelt (1990), our study suggested interesting results. While Hauser and Wernerfelt (1990) indicated that the probability of consideration of two brands is independent, Roberts and Lattin (1997) found that similar two brands are simultaneously considered in the cereal market. Our study suggests that this issue may depend on consumer segments of interest. In our study, innovators formed more homogenous consideration sets than non-innovators.

The results of this study also give important strategic implications for marketers of high-technology products who are targeting innovators mainly. According to the results, innovators have a relatively smaller consideration set, so a concentrated marketing effort is needed to make innovators consider their brands. Furthermore, it implies that if a marketer wants to increase the consider-
nation rate of innovators, they should differentiate (upgrade) their products from their competitors in key product attributes rather than in other product attributes. If a marketer tries extreme differentiation from leading competing brands (differentiate in terms of all product attributes), his/her brand might not be included in the consideration set of innovators, which means less possibility to be chosen by them.

Although this study has been designed and performed very strictly, there are still limitations. First, we may point out sample problems. Our sample consisted of students attending a major university in Korea. Future research may test US samples, possibly including diverse job groups. Also, in our study, early adaptors were included in the innovator group due to the sample size problem. In future studies, researchers may form “pure innovators” by expanding the sample size drastically. Second, one may argue that instead of dividing subjects into innovators vs. non-innovators, it may be better to divide subjects into high-innovative and low-innovative groups. We prefer innovator vs. non-innovators distinction because innovators’ behavior is emerging as of particular interest to high-tech marketers recently. However, although the results have not been presented in this paper, we actually performed another analysis by dividing subjects into high and low groups (divide subjects into two groups using the mean of the innovativeness scores). The results indicated a larger difference in terms of size and similarity between high and low groups than the original two groups (innovators and non-innovators). Finally, although we specified theoretical drivers underlying the suggested hypotheses, we did not directly measure them (used innovativeness measures as proxies for them). Future studies may directly measure the drivers to better explain the rationale for the observed behavior.

REFERENCES

| TABLE 6 |
The Effect of Innovativeness on Consideration Set Size & Similarity

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Coefficient</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>S.E.</td>
<td></td>
</tr>
<tr>
<td>Hypothesis 1 (Consideration set size)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>3.264</td>
<td>.225</td>
<td>14.532</td>
</tr>
<tr>
<td>PI</td>
<td>-.247</td>
<td>.036</td>
<td>-6.810</td>
</tr>
<tr>
<td>GI</td>
<td>-9.3E-02</td>
<td>.059</td>
<td>-1.574</td>
</tr>
<tr>
<td>Dummy</td>
<td>9.164E-02</td>
<td>.084</td>
<td>1.093</td>
</tr>
<tr>
<td>Hypothesis 2 (Similarity)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>3.461</td>
<td>.317</td>
<td>10.919</td>
</tr>
<tr>
<td>PI</td>
<td>1.50</td>
<td>.054</td>
<td>2.763</td>
</tr>
<tr>
<td>GI</td>
<td>8.855E-02</td>
<td>.083</td>
<td>1.069</td>
</tr>
<tr>
<td>Dummy</td>
<td>.543</td>
<td>.118</td>
<td>4.613</td>
</tr>
</tbody>
</table>

*PI=Product Innovativeness, GI=General Innovativeness, Dummy=(Laptop computer, Cellular Phone)

| TABLE 7 |
Skewness Difference between Innovators and Non-innovators

<table>
<thead>
<tr>
<th>Classification according to product-specific innovativeness scores</th>
<th>Number of cases</th>
<th>Mean*</th>
<th>S.D.</th>
<th>t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laptop Computer</td>
<td>Innovators</td>
<td>24</td>
<td>604.67</td>
<td>345.96</td>
<td>.610</td>
</tr>
<tr>
<td></td>
<td>Non-innovators</td>
<td>24</td>
<td>527.71</td>
<td>512.44</td>
<td></td>
</tr>
<tr>
<td>Cellular Phone</td>
<td>Innovators</td>
<td>24</td>
<td>1374.29</td>
<td>710.44</td>
<td>3.454</td>
</tr>
<tr>
<td></td>
<td>Non-innovators</td>
<td>24</td>
<td>776.17</td>
<td>463.49</td>
<td></td>
</tr>
</tbody>
</table>

* The larger mean value indicates higher skewness.
218 / Investigating the Effects of Consumer Innovativeness on Shape of Consideration Sets

