How Many Wings Does a Butterfly Have? Or Stimuli As an Elicitation Technique For In-Depth Interviews

Maria Kniazeva, University of San Diego

ABSTRACT - This research incorporates visual triggers into traditional procedures of in-depth interviewing in order to elicit respondents' perceptions of complex phenomena with a heavy scientific background, such as genetically modified food. [Genetically modified food is scientifically defined as food containing genetically altered organisms.] The primary objective of the study is to examine the effectiveness of the use of visual triggers as research tools for collecting data in the domain of the unknown and to identify the mechanism of elicitation technique. This mechanism is found to include different readings of the same pictures, agreement/disagreement, similar readings of different pictures, voicing conscious and unconscious thoughts, and seeing oneself in the picture.

[to cite]:


[url]:

http://www.acrwebsite.org/volumes/9141/volumes/v32/NA-32

[copyright notice]:

This work is copyrighted by The Association for Consumer Research. For permission to copy or use this work in whole or in part, please contact the Copyright Clearance Center at http://www.copyright.com/.
How Many Wings Does a Butterfly Have? Or Stimuli As An Elicitation Technique For In-Depth Interviews

Maria Kniazeva, University of San Diego

ABSTRACT
This research incorporates visual triggers into traditional procedures of in-depth interviewing in order to elicit respondents' perceptions of complex phenomena with a heavy scientific background, such as genetically modified food. The primary objective of the study is to examine the effectiveness of the use of visual triggers as research tools for collecting data in the domain of the unknown and to identify the mechanism of elicitation technique. This mechanism is found to include different readings of the same pictures, agreement/disagreement, similar readings of different pictures, voicing conscious and unconscious thoughts, and seeing oneself in the picture.

SPEAKING THE LANGUAGE OF IMAGES
How does one make consumers talk about things of which they have limited knowledge and only a vague understanding? Invite an average consumer to be interviewed for a study on consumer perception of genetically modified food, and most probably the researcher will encounter a polite refusal or protests about the consumer’s modest knowledge of the subject.

Speaking the language of the unknown becomes increasingly important in light of the new goods and services that rapid development in biotechnology is bringing to market (Day 2002). Already, the nations’ first genetically engineered pet—a tiny zebrafish that glows in the dark thanks to a gene from a sea coral—has gone on sale (Pollack 2004); and genetic engineering supposedly can be found in over 70 percent of all processed foods in the U.S. This study proposes that it is the indirect interrogation of consumers about their perception of such new products that may reveal how they make sense of the unknown. Specifically, it is the visual language, the language of images associated with a novel phenomenon that can provide a researcher with some valuable insights into consumers’ minds.

In this study, visual imagery is used as a tool to elicit subjects’ perception of complex phenomena with a heavy scientific grounding, such as genetically engineered food. The research objective is to explore the effectiveness of the use of visual triggers as a method of collecting data and to identify the mechanism of elicitation technique. The presented study does not aim at testing the effectiveness of visual images in their influence on attitude formation.

The paper is structured to first provide a brief review of the use of visual tools as a research method in marketing discipline. The following two sections introduce the method used to examine the issue and report findings that include six mechanisms of elicitation technique. The last section concludes with discussion of the effectiveness of the employed methodology.

USE OF VISUAL TOOLS AS A RESEARCH METHOD
The use of visual tools as a research method is well documented in marketing literature. Heisley and Levy (1991) review the history of visual research in social science and its application in consumer behavior. Anthropologists Collier and Collier (1986) analyze visuals used both for gathering data and as tools to enrich and extend interview methodologies. The authors claim that visuals such as photographs, drawings or collages can function as starting and reference points for discussions of the unknown or the familiar. Visuals are advocated for inviting open and unrestricted expression by respondents while maintaining a concrete reference point. It is claimed that they relax respondents who do not feel that they are at the center of attention when questions directly address visual content. Collier and Collier (1986) stress that though more provocative and intense photographs may result in potentially richer responses, even relatively simple pictures can yield valuable insights.

Collecting data from respondents with the help of visual tools has been creatively practiced in marketing research. Samples include a study of personal grooming rituals (Rook 1985) and a study about clothing (McCracken 1988a). In the first instance, respondents are asked to write stories based on two pictures of individuals grooming themselves presented by the researcher; in the second, subjects respond to a series of slides that picture people dressed in different ways. Visual stimuli are used here to provide either verbal or written reflection. In both cases, the illustrations are prepared and chosen by the researcher. This function though can be also delegated to the respondents, a technique practiced in the method introduced as the “Zaltman Metaphor Elicitation Technique” (Coulter and Zaltman 1994).

The technique developed and proposed by Zaltman for investigating brand image associations, requires respondents to take photographs or collect pictures from print media or other sources that indicate what the brand means to them. Interviewing that occurs later is structured around discussing visual imagery collected by the respondents. In a similar vein, in another study respondents cut out “any material they wish” to construct a collage expressing the concept of desire and, at the request of researchers, follow up with written interpretations that are then analyzed by researchers (Belk, Ger and Askegaard 1997). Another sample is a method in which researchers prepare the visuals by taking photographs of the respondents engaged in certain activities and then ask the respondents to comment on the pictures (Heisley and Levy 1991). This method is termed “autodriving” because respondents become projective interpreters of their own actions. Subjects’ reflections become data for the researcher’s analysis.

DESIGN AND METHODS
In this study, visuals have been incorporated into the traditional procedures of in-depth interviewing (McCracken 1988b, Strauss and Corbin 1998). The purpose of the illustrations was to “trigger” the subjects, to elicit their ideas and provoke discussions on the topic of genetically engineered food. In that, the expectation was drawn on the argument that “what is found in the picture is conditioned by the cultural knowledge the viewer brings to the viewing” (Ball and Smith 1992, p.18).

The convenience sample included 32 participants representing various educational backgrounds, occupations, and age. They were invited formally to participate in a study “on food.” The words “genetically engineered” were not mentioned during the recruitment process in order not to scare away those potential subjects who did not feel knowledgeable about the issue. This topic was also not revealed during the first part of interviews, which revolved around

1Genetically modified food is scientifically defined as food containing genetically altered organisms.
the subject’s perception of food. Only after 30-60 minutes were spent discussing food, was the subject asked to look over the illustrations prepared by the researcher and to choose those that the subject associated most closely with what s/he heard, felt, thought or knew about genetically modified food. A specific quota was not imposed, but if respondents asked for guidelines, it was suggested that they choose up to seven or eight illustrations from the collection they were shown. After that they were asked to explain their choices.

The study was designed under the assumption that the use of illustrations would help evoke meaningful responses even in cases where the subject happened to be unaware of the issue. It was expected that even the most uninformed people would be able to relate to some of the pictures, which would help them voice their conscious or unconscious thoughts.

Thirty illustrations used as visual triggers were chosen from 130 collected over two years by the author. The majority of them were drawings, photographs, and cartoons originally published in the popular mass media (newspapers, magazines and the Internet) as illustrations to articles on the topic of genetically modified food. The collection also included several photographs taken by the author at one public protest against genetic engineering.

The major criteria for selecting illustrations to be used as visual triggers was the author’s intention to provide a diverse set and offer a balanced picture by presenting negative, positive, and neutral themes associated with genetic engineering. To predict what would be the “right” number of illustrations to offer the subjects so that the number is manageable and the respondents related to illustrations, six exploratory interviews were first conducted. Of original 42 illustrations used in the process, 30 were chosen at least once by the subjects and thus were selected for the further 30 interviews. Out of this collection of thirty illustrations, only four pictures did not receive any attention from the 32 respondents. The most popular picture was the black and white cartoon titled “Farm Factory: Food of the 21st Century” which was commented on by sixteen subjects (illustration #7, The Orange County Register). It depicts a reaper holding a box with four open compartments displaying “scientific food” and “diseases” as food of the 21st century. Three illustrations were chosen thirteen times each. One was a colorful drawing of the huge corn cob attacking people in the field (illustration #4, Business Week), the other—a colorful cartoon titled “Frankenfood Farms” and depicting a grocery store window with two types of food, “farm fresh” and “fresh from the lab” (illustration #1, The Washington Times).

**VISUAL TRIGGERS: MECHANISM OF ELICITATION TECHNIQUE**

**Different Readings of the Same Pictures**

When seven respondents refer to the colorful picture of a butterfly (illustration #16, The Wall Street Journal) as the one that makes them think of genetic engineering, they fill the illustration with opposing–positive or negative–meanings. In positive reflections, the picture is described as nice and appealing, liking for the butterfly is admitted directly, and genetic engineering is perceived favorably:

Butterfly probably pollinating something which … itself may create some sort of diversity within the species, who knows? … Just a nice picture and I like the butterfly. (Sue, 542)

We have a butterfly sitting on something here and it’s an appealing picture, insects play a part in crops. I’m not quite sure, I’m not a biologist, you know, cross pollinating things, carry a plant to another plant, and if it’s good enough for a butterfly, he doesn’t seem to be complaining … I don’t know if it’s genetically engineered corn or whatever it is that he is on. Hmm… If it’s good enough for the butterfly, it’s good enough for me. Animals and insects are usually, not always but generally picky about what they eat, so, the butterfly likes it. (Mike, 55)

The positive emotional framing here is rooted in linking the pollinating butterfly with diversity provided by nature. Diversity, in turn, secures goodness, which is mentioned by the subjects several times and stands out as a symbol of peace of mind. In addition, this perspective equates the butterfly with a human being (“if it’s good enough for the butterfly, it’s good enough for me”), and indicates a lot of trust in its “pickiness.” Consequently, humans are seen as being as much a part of nature as the butterfly—the theme that is also present in the opposite perspective that otherwise stresses the disturbing nature of the same illustration:

It’s like from that butterfly that got into all this trouble. I don’t recall the whole story, but from TV… That’s why I picked that, it reminded me of what I had seen and how maybe if you think you are doing something good, but this is just … If it’s killing this butterfly, what’s it doing to us? We don’t know. (Bryan, 39)

It’s a picture of this butterfly with three wings. It’s genetically altered and I think it’s something like mutation or something like that. Normally, it just has two. So I think of that as being something that is a freak of nature. (Chris, 22)

The only commonality that the above perspective shares with the preceding one is expressed in relating to the butterfly as a creature of the same nature as human beings (“if [genetically engineered plant] is killing this butterfly, what’s it doing to us?”) Otherwise, it is not peace of mind but worry that is signified in the words “trouble,” “killing,” and “freak of nature.” This worry forces the subject to see abnormality where it does not exist: he sees the butterfly having three wings while in fact it has two in the picture. The wings obtain symbolic meaning as their number indicates either normalcy or abnormality and places the butterfly on the “norm” or on the “mutation” side of nature. It is the preexisting negative attitude toward genetic engineering that explicitly reveals itself in this reflection and shapes the respondent’s viewing by making him see three wings. The subject needs some “tangible” evidence to support his mindset and subconsciously finds that evidence in “spotting” non-existing details.

Another illustration that reveals different readings displays bright and eye-catching fruit and vegetables (illustration # 14, Internet). They are described by the respondents in a positive manner: “colorful,” “perfect,” “ideal,” “plump,” “sunny,” “healthy,” “fresh.” However, subjects link these attractive physical properties with opposing concepts. In one instance, these physical characteristics are interpreted as a sign of genetic engineering (“real food doesn’t look like that,” “it’s probably have been modified to be this way”), in another, the respondent believes that this food stuff is “probably not genetically modified” and “comes from smaller farms, most definitely”:

This one is very colorful, it has deep colors, bold colors. Looks like the food is, you know, fresh, it’s like in perfect condition,
ideal condition. Looks, you know, looks healthy, looks fresh. So, it’s probably have been modified to be this way. (Brett, 27)

This is all fresh, probably not genetically modified. … it comes from smaller farms, most definitely. … If it was more genetically modified, … watermelon probably would be seedless, it might be a different shade, it might be an orange watermelon. … So this is, I don’t see this genetically modified, that’s not something that is mass-produced for millions and millions of people, this is a smaller farm. (Jim, 40)

Thus, when respondents associate external perfection of fruit with freshness and healthiness, they tend to see this perfection as coming from nature and credit nature with providing both the external beauty and internal functionality of food items. But when perfection is viewed as not real and due to technological intervention, it is attributed to genetic engineering, and fruits and vegetables are perceived as artificially modified to look so perfect—a quality that is perceived with a degree of suspicion.

Agreement–Disagreement

Another form of reflecting differently to the same pictures is expressed in direct “agreement-disagreement” pattern meaning that respondents choose illustrations either because of their acceptance or non-acceptance of the content. At the most general level of agreement, the respondent identifies the major message that the illustration conveys and then explicitly supports it: “So she is kinda saying what choice do we have? I agree with that. I agree with what she is saying.” Another example is offered by the reaction to the popular illustration of a big corn attacking people in the fields which reveals two viewing (illustration #4, Business Week). While both perspectives articulate the symbolism of the produce threatening our society and interpret the size (“gigantic,” “big”) as symbol of overpower and taking over human lives, the underlining conclusions go in opposing directions: one welcomes promises of science, the other opposes it:

Interesting picture of a gigantic piece of corn and the people seem to be fighting against it. They are afraid of the big corn. I don’t know why they would be afraid of it. They should be happy. (Lou, 48)

There’s a picture of an enlarged corn kind of causing terror to all these people. Just an example of what enhanced corn looks like to me; larger, more abnormal looking than the rest of everything else. It poses a very terrifying demeanor to these that are opposing it. So it could be very dangerous, too. (DeJay, 24)

If the first perspective links genetically engineered corn with people’s happiness, the negative one dramatizes discomfort by referring to terror and danger. This difference is explained by the opposing attitudes of two respondents to the concept of genetic engineering. Thus, it is not the pictures themselves but what consumers bring to viewing them that dominates their reflection.

Disagreement with the content of the picture that the respondents believe is conveyed is one of the strong motivators that triggers the subjects to share insights with the researcher. These insights include “accusations” of untruthful visual representation (“it’s not true because I think that genetically altered food could also look a lot better than normal food”) and of exaggerating the problem (“that looks like an advertisement that’s against genetically modified food, but I think it’s overstated. I don’t think it’s that bad”); and expressing surprise at the content of the picture. For example, the colorful collage that has a huge DNA helix, and a scientist, a nurse, and a farmer performing their daily routines (illustration #19, Harvard Business Review) is interpreted by the subjects as hinting at the potential medical properties of food, a possibility of which they are doubtful:

I don’t associate food with medical very much. So when I see this, it doesn’t have a meaning. It has a picture of a hospital scene and a science scene and a farm scene. I’d never thought about those things in the same thought. (Lynn, 30)

This one was interesting. It kind of makes it look like it’s a positive thing, genetically enhanced food, because there’s someone growing some plants here or growing a crop. I don’t know if this is DNA. I think it is DNA. I guess it’s saving lives because here’s also a picture of a hospital and a scientist who is looking at how to make the food better than natural. I don’t know. I kind of don’t agree with this one….I don’t know if you would use genetically enhanced food to make you feel better. I think it would probably make you feel worse. (Patrick, 24)

Similar Readings of Different Illustrations

Similar readings of different pictures occur when the same reflections are evoked by various illustrations. For example, the issue of different levels of acceptance of genetically engineered food is raised in response to two drawings. The first depicts a bright DNA helix consisting of lobster, chicken, asparagus, banana, strawberries and other foods of unrelated categories (illustration #2, Time). The second illustration is a white and black drawing depicting a human hand peeling a banana to uncover a fish inside (illustration #25, The Wall Street Journal). The respondents reflect on the symbolic content of the illustrations by expressing their personal “line of acceptance” about where and how far genetic borders can be crossed:

This one I liked. It has lobster. Oh, but it has meat in it. But, yes, I can see that. The lobster has…wow! I can see this happening. Not necessarily crossing fruit and animals, you know, I can’t see plant life crossing with animal DNA. But I can see animal DNA within the same family like lobster and shrimp crossing to create something. … I can see beans with asparagus or beans with zucchini or something. Plants within plant. Animals within animals and different sea food. Believe it or not, I cannot see the crossing of say chicken DNA with other chicken DNA to create another chicken. I cannot see that. (Kathy, 37)

This one I chose just because when I looked at it, it illustrated the combining of genes from species that appear to have absolutely nothing in common. It goes back to that line of acceptance. Maybe I’m willing to accept the transplant of a gene from one species of corn to another, but when you start to get into other species, that’s…you just wonder if this is really a good idea. So this was just very simple, a black and white picture that illustrated that. (Alice, 45)

The major conclusion makes it very clear that the idea of genetic engineering can be accepted when it does not imply crossing sacred borders. These borders seem to be established not only by nature but also by the subjects. Respondents offer very specific “recipes” of what can and what cannot be created, while demonstrating that their line of acceptance is contradictory. Thus, the first respondent accepts crossing within animals but does not allow this rule to apply to chicken. This leads to conclusion that the line of acceptance is not so much rationally as emotionally justified.
Voicing Unconscious Thoughts

Subjects, who see themselves as scientifically unaware of the issue, exhibit the most emotionally framed reflections while mostly talking about their feelings. The respondent who admits that she knows little about the topic and never heard the word “ Frankenfood” (which is how the consumer world labeled genetically engineered food after the fictional hero of Mary Shelly’s gothic novel Franken stein) has difficulty explaining why she chose two pictures (illustrations #5, Reason; and illustration #6, Business Week):

It looks like a state trooper or an officer of the law of some sort that is lassoing that corn. It says to me that … I don’t know what it says to me. I didn’t like it. I don’t know why I picked this…. Farm Factory… they used to be wonderful places to live. This is a sad thing to me because… the poor corn has got barb wire all over it. It can’t be free. I don’t understand…. I don’t know, I didn’t like it. So I’m picking the genetically engineered things that I don’t like. I’m a Kansas girl. I don’t like corn being treated that way. (Kenn, 45)

What is implicit in this reflection, though, is a well-articulated feeling of discomfort which subject communicates through the choice of the pictures and the words used to describe them. “Poor” versus “wonderful,” “now” versus “used to be,” “free” versus being “lassoing,” “farm” versus “a trooper”—all these descriptors give strong meanings to two opposing symbols—that of comfort of being a girl on a Kansas farm, and that of discomfort behind innovations of modern days. The corn, metaphorically seen being lassoed and wired, is symbolically perceived as being abused by humans.

Emotional reactions to the illustrations also dominate when respondents relate to images by emphasizing the mutated appearance of the depicted food items. This is when they link appearance with their subconscious thoughts. This demonstrates the expressive power of even the most “plain” pictures. A good example is an unsophisticated picture of a bright red tomato and brown soy beans on a white background (illustration #42, Internet). The respondent initially states that she does not know why she associates genetically engineered food with tomatoes, but soon comes to realize that it is not the tomatoes themselves but the perfection that their looks convey that she links with the concept of genetically engineered food:

When I think of genetic engineering it’s tomatoes, I don’t know why. I don’t know if that image got to me somehow from some news… But this is a picture of tomatoes and soy beans and it looks like this tomato is specifically enhanced. It looks very perfect. So when I’m thinking of genetic engineering, I’m thinking of perfection. (Aerica, 36)

Voicing Conscious Thoughts

As a concrete reference point, illustrations are a worthwhile means of expressing one’s position on the issue of genetically engineered food and in some cases even help generate a well-articulated philosophy in their attitude to food in general. Thus, when the respondent reflects on the picture of huge corn attacking people in the fields (illustration #4, Business Week), she notes, “I wouldn’t fight it, but I do have the negative connotation.” When another subject chooses a picture depicting a protestor holding a banner with “The Real Food Please” slogan (illustration #3, photo by the author), he also shares with the researcher that personally he would not join protestors. At the same time, the respondent makes it clear that he relates to the slogan for conveying his feelings on genetically altered food that, to him, does not belong to the category of natural food. The respondent’s understanding of genetic engineering includes “doing something” and “messing with something” which he views to be wrong:

It reminded me some of the things I’ve seen on TV because I think I recall people protesting. I’m not big on protesting, I mean, I wouldn’t do it myself, I don’t think. I mean, “The Real Food Please,” I can relate to that. That’s sort of my feeling on genetically altered food. It just seems like there’s something wrong if you have to do that to food, it’s not natural anymore. They’ve done something. You are messing with something that shouldn’t be messed with. (Bryan, 39)

The other subject uses the picture to express the symbolic meanings that he associates with his own garden. The illustration that evokes his nicely expressed narrative about appreciation for food and where it comes from, is a black and white cartoon that provides humorous instructions for planting seeds (illustration #21, Internet). These instructions include only three steps: sow seeds 300 feet apart; do not water, fertilize, thin or plow; and just sit back and reap. The respondent admits his liking for the cartoon, which he feels is clever. This cartoon prompts the respondent not only to reveal his own passion for a garden but to explain the philosophical bottom line that he sees behind it. Thus, he points out how “dangerous” it is to “view food as something that shows up in the supermarket under cellophane by magic.” Such an attitude, he believes, breeds a “very dangerous” perspective where people do not have to think about water use, chemicals, or processing. He argues that “it’s good to be close to the earth” because it is good to realize how the natural cycle works and how things such as soil and water, can be misused, which means a lot to him. A little garden therefore obtains a deep meaning and stands as a symbol of proximity to the earth and avoiding the dangers of being shortsighted.

A powerfully expressive character of the cartoon “Food of the 21st century” (illustration #7, The Orange County Register) is used by another respondent to articulate his view of genetic engineering as being fueled by pure corporate greed. In this cartoon, which is the most popular and is reflected upon by sixteen respondents, the grim reaper stands as a farm factory representative and holds a box with four open compartments. Three of the compartments display a different type of “scientific food” in the form of a chicken, a pig, and a cow, and one displays a crazy looking man over the label reading
“diseases.” While interpreting the cartoon, the respondent points out that he understands that the world population is getting bigger and there is a need to look for new and better ways to feed everybody. At the same time he reveals his skepticism over assurances that this is the only rationale for genetic engineering:

I thought this was an interesting one, “Food of the 21st Century,” because that what it feels like to me. Of course, the grim reaper has the dollar sign there and I think a lot of these large, corporate, farming industries, they see a big profit out of genetically engineering food. Well sure, the more you can produce, the more money you can make. I don’t think it’s a matter of them feeling sorry for all the people starving and wanting to feed them. I think it’s just a matter of them wanting to make money. (Mike, 49)

The respondent does not identify with “these large, corporate, farming industries” and does not believe in their “feeling sorry” for a starving population. He stresses the profit side of the technological innovation and centers his comments on the “dollar sign” which, contrary to the attention that it receives from the subject, is very small and even hard to notice. This, in turn, also demonstrates that the respondents see in the illustrations what they want to see based on their pre-existing beliefs and knowledge.

Seeing Oneself in the Picture

Connecting with the depicted characters on a personal level is one more motivational trigger that elicits meaningful responses from respondents. It happens when the subjects can directly identify with the characters and share their concerns. For example, the father of a ten-year-old boy chooses a photograph of a protestor holding a banner that states, “Our Kids Should Be GE Free!” (GE evidently meaning genetic engineering) and depicts a young boy (illustration #12, Internet). The respondent admits that as a father he relates to this illustration. His explanation of his reservations about genetically engineering food. Well sure, the more you can identify with the character that she describes as being “a little distraught”: “This one, she is in a dilemma, ‘Do I buy the modified or the not?’ She looks a little distraught. I identify with her. I do, but here she knows which one is which. I don’t know. She has a choice. I don’t know if I have.” (Kenna, 45)

“Clueless”–this is how another respondent describes the characters of the illustration that uses the same objects but conveys a different meaning (illustration #29, Business Week). In that picture, only cans of corn with a DNA helix are displayed. The woman standing next to them is as disproportional as in the previous picture. This is, however, the only feature these two characters have in common. Contrary to “a little distraught” woman, the second one looks happy, her lips curve in a beautiful smile, and her eyes shine. She does not face any dilemma, just the opposite: she holds two cans of genetically engineered corn, and so does a man standing behind her. The man smiles and looks happy as well. The respondent finds the picture “hilarious”:

I think this is a hilarious picture. It’s got the genetically engineered on the cans and the people just look so clueless and they are just buying it and they are clueless and they don’t know what they are putting in them and they don’t care. I think that’s how most of the public is. I mean, you had asked me earlier, do I think I have [eaten genetically engineered food]? I’m sure I was just as clueless as these people because I’m buying something that who knows what? Because they don’t say on the can that it’s genetically engineered. It’s kind of pathetic actually. (Mike, 49)

Through this picture the subject describes his vision of “most of the public,” in which he also includes himself. Intentionally repeating the word “clueless” three times, he dramatizes a situation in which people are not aware of what they eating and in fact do not care. “I was just as clueless as these people,” he admits pointing to the carelessly smiling characters. He also identifies the problem as a lack of labeling of genetically engineered food while juxtaposing a clueless public with an uncaring “they.”

DISCUSSION

Thirty illustrations used as visual triggers for in-depth interviews proved to be an effective research tool that provided the author with valuable insights into consumer perception of a complex phenomenon. They helped respondents express their thoughts while reflecting on a topic with a heavy scientific background, such as genetically engineered food. Overall, the use of this elicitation technique 1) proved the ability of visual triggers to allow for the maximum degree of free association possible within structured interviewing (Collier and Collier 1986) and 2) supported the assumption that viewing pictures is conditioned by the cultural knowledge of the subject (Ball and Smith 1992).

As was the author’s assumption, there were several respondents who initially felt uneasy when the words “genetically engineered food” were pronounced, and they made it very clear that they did not know much about it. When, as a next step of interviewing,
they were asked to choose the illustrations that they linked with their perception of such food, a noted degree of relaxation on their part was expressed, and they were able to reflect on the pictures.

The illustrations performed several functions. Because of their diverse and light-hearted character, they sparked respondents’ interest and aroused curiosity, eased the discussion, provided the subjects with a concrete reference point for verbalizing their perceptions, and evoked meaningful associations with genetically engineered food. The respondents definitively related to the illustrations when they commented: “This picture illustrates to me...” “It would probably be one of these pictures; it looks like perfect...” “I don’t know why I chose this picture...” “I think this is a little extreme, and I think that’s why I picked it because it’s so extreme...” “It triggered that in my head...” “I can relate to that...” “It reminded me of some of the things I’ve seen on TV...” “I have strong emotions for this one...” “I think this is a hilarious picture...” “All of that came to mind as I looked at this one...”

The collection of illustrations used by the researcher provoked discussions and elicited meaningful reflections by making respondents voice both their conscious and unconscious thoughts. The pictures triggered respondents to express their agreement or disagreement with the content of the pictures and evoked interpretations that reflected the subjects’ existing beliefs and knowledge. By seeing themselves in some of the illustrations, respondents were able to identify more strongly with the discussed topic. In addition, because attention was focused on the illustrations, they did not feel tested on the knowledge of genetic engineering and could freely express their thoughts.

The argument that respondents are preconditioned in their reflection on illustrations by their existing knowledge and beliefs is particularly evident when the same pictures are “read” differently. For example, when the subjects bring polar perspectives into seeing something as simple as a butterfly (illustration #16, The Wall Street Journal), it only reinforces the theory that they culturally construct the meanings associated with these pictures. These cultural constructions are not uniform images imbedded in pictures, but multifaceted reflections that mirror the subject’s state of mind.

In this context, it becomes clear that those opposing genetically modified food are very aware of the power of visuals and have been extensively using visual language. Thus, an analysis of the “weapons” used by protesting consumers makes them look surprisingly primitive. They include displaying visual threatening images in streets, on the Internet, and on every occasion in order to get press coverage. These images depict a skull, crossbones, and a “strawberry fish.” Street protestors are costumed as mutant ears of corn, dressed up as a berry with fishy eyes or wear six-foot cardboard butterfly wings. They display a giant puppet representing a genetically modified chicken, a puppet of a tomato crossed with a fish, and a massive inflatable corncob, complete with a fang-filled mouth and bloodshot eyes.

The researchers who advocate the use of visual tools as a research method argue that the power of graphic illustrations remains as strong as it was among early illiterate people because attention was focused on the illustrations, they did not feel tested on the knowledge of genetic engineering and could freely express their thoughts.

REFERENCES


Day, George (2002), presentation delivered at the American Marketing Association Sheth Foundation Doctoral Consortium, Atlanta, GE.


McCracken, Grant (1988a), Culture and Consumption, Bloomington and Indianapolis, Indiana University Press.


