Special Session Summary Reactance Revisited: Why Absence Makes the Heart Grow Fonder

Yael Zemack-Rugar, Duke University
Gavan J. Fitzsimons, Duke University

[to cite]:

[url]:
http://www.acrwebsite.org/volumes/9103/volumes/v32/NA-32

[copyright notice]:
This work is copyrighted by The Association for Consumer Research. For permission to copy or use this work in whole or in part, please contact the Copyright Clearance Center at http://www.copyright.com/.
“Is Reactance Intentional or Instinctual: Nonconscious Aspects of Reactance Response”
Yael Zemack-Rugar, Duke University
Gavan J. Fitzsimons, Duke University

The phenomenon of reactance in consumer behavior is well established (see Clee and Wicklund, 1980) and is observed in response to stockouts (Fitzsimons, 2000), unsolicited recommendations (Fitzsimons and Lehmann, 2004), and many actions on the part of vendors/suppliers that are perceived as a limitation of freedom. As these papers demonstrate, the effects of reactance on consumer choice are often negative, resulting in irrational or non-optimal decisions. For example, people may go against expert advice or end up preferring an unavailable option even if it was not their first choice. Given that reactance has been established as such an important motivation (Brehm, 1966) and has been shown to have some detrimental effects on consumer behavior, it is necessary to try and understand its nature and essence more deeply. Specifically, we examine whether reactance is an instinctual or deliberative response. Additionally, we examine the strength of this motivation and its effects on consumer choices.

Two theories regarding this motivation could be brought forth. On the one hand, reactance might be an almost instinctual, immediate response to a perceived threat to freedom. On the other hand, reactance may be a deliberative cognitive process resulting in the overriding of other motivations. For example, after some deliberation one might substitute the urge to conform (e.g., with a recommendation), and reassert one’s freedom with a reactance response. Reactance would in this case be a deliberative response, part of a principled decision, if you will.

To first examine whether reactance is an instinctual or a deliberative response in consumer behavior we use the construct of ego depletion (Baumeister et al., 1998). Ego depletion is a reduction in resources of the self resulting from previous exertion of self control. The literature shows that ego depleted individuals are unable to control their urges; they are often unable to substitute their instinctual responses with more socially appropriate ones (Baumeister et al., 2000; Baumeister and Exline, 1999). If reactance is instinctual, then depleted people should exhibit a high level of reactance, since they are unable to substitute it with a more rational, thought out response. However, if reactance is deliberative, depleted people should be able to suppress it, since depletion does not affect cognitive capacity (Baumeister et al., 1998). We also add a manipulation of passive vs. active. Depleted people are known to be generally passive (Baumeister et al., 1998). Thus we expect that when reactance is passive and participants are depleted, reactance levels will be particularly high. The level of reactance when it requires active choice from depleted participants will depend on how strong the impulse is. If it is strong enough to cause even depleted people to take action, then levels of reactance in the depleted/active cell will be higher than those in the non-deplete/active cell. This latter cell is predicted to be particularly low, as individuals have both the resources and the opportunity to consider their reactance (i.e., often irrational) response.

In a 2 (depleted/non) by 2 (passive/active) between participants study we find strong evidence that reactance has a strong impulsive component. Participants who are depleted (i.e., unable to overcome the reactance “itch”) and for whom reactance required no effort (i.e., passive condition), exhibited the highest level of reactance (M=82%). Moreover, even participants who were depleted in the active condition, exhibited relatively high levels of reactance (M=33%) when compared to their non depleted counterparts (M=15%).

In a second study we examine the same questions using a manipulation of cognitive load. While load taxes resources much like depletion, it is different in that participants are aware that their mental resources are taxed, and thus may use deliberation and choose to utilize the recommendation as a decision aid. Such a deliberative choice would reduce reactance under load. In a 2 (load/no load) factor between participants design we find that indeed, reactance is significantly lower under load (M=22%) than under no load (M=45%). Alternative explanations for this finding may be that: (1) participants under load did not process the recommendation, (2) PKM consideration caused them to use the recommendation source as a cue under load, but not under no load.

We thus conduct a third 2 (load/no load) by 2 (expert vs. random recommendation) between subjects study, with a measured factor of individual reactance proneness. If individuals under load use the recommendation as a decision tool, they should do so only if the recommendation is from an expert. Thus, if the recommendation is from an expert, reactance should be generally low; if recommendation is from a random source, reactance should be higher in particular under load. The load-random condition is one where participants are both inclined to express reactance (impulses uninhibited due to load) and have a reason to do so (recommendation cannot serve as a decision aid). This pattern will be particularly true for individuals with a high reactance proneness. We indeed find a Load*Recommendation*Reactance level interaction. Participants low in reactance proneness respond equally in all cells; participants high in reactance proneness respond equally to the expert recommendation under load and no load (M=29%-32%) but increase their reactance significantly to the random recommendation under load (M=39% vs. M=78%). PKM cannot explain this interaction with reactance proneness. Additionally, manipulation checks confirm the recommendation was equally processed under load and no load.

Thus we conclude that reactance has strong impulsive elements but can be controlled by a deliberative element to avoid over-exercising of this impulse in a way that might hurt choices.

“Reactance and Choice: The Role of the Timing of Information”
Kyeong Sam Min, University of South Dakota
Patricia M. West, Ohio State University
Joel Huber, Duke University

This paper examines the role of the timing of information in the context of product unavailability. Prior research has found that when consumers encounter an attractive but unavailable product prior to making a choice, they are more likely to select the most similar alternative. This is based on the assumption that the presence of the unavailable product increases consumers’ attention to the similar alternative or the attribute for which the unavailable product and the similar alternative excel.

However, such cognitive accounts fail to fully explain why consumers switch to a dissimilar alternative when they are notified after making a choice and thus experience negative affect. Building
on reactance (Brehm, 1966; Wicklund, 1974) and coping literature (Lazarus, 1991), we argued that reactance can be manifested by negative affect and tested a new motivational account that explains choice reversal. We predicted that consumers are more likely to switch to a dissimilar alternative when they are notified after, rather than before, they make a choice, because consumers can cope with their negative affect by selecting an avoidant alternative (e.g., Luce, 1998), in this case, the dissimilar alternative. Thus, we expected to find that consumers who select a dissimilar alternative are less likely to feel negative affect than those who select a similar alternative. We also expected to show that the effect on choice of the timing of information is more likely to occur when the unavailable product is the consumers’ preferred product, because consumers care about a product’s availability if it is relevant to their decision making (Fitzsimons, 2000).

To test these predictions, we ran an experiment with a 2 (timing of information) x 2 (preference) x 2 (measurement order) between-subjects design. First, we manipulated the timing of information during the choice task. In the ‘before’ condition, the participants were notified about product unavailability prior to choice. In the ‘after’ condition, the participants were notified after they had made an initial choice. Each choice set consisted of two core products with the same moderate quality rating but from a different product type (e.g., 3-star Italian vs. 3-star Chinese restaurant) plus a high quality but unavailable product (e.g., 4-star Italian restaurant). A control condition, where only the core set was offered, was included to serve as benchmark. Second, we measured each individual’s preference for product alternatives, one week prior to the main study. In the ‘high preference’ condition, the unavailable product was the participants’ preferred product. In the ‘low preference’ condition, the unavailable product was their less preferred product. Third, we varied the order of measuring affect and final choice. In the ‘choice measure first’ condition, the participants were notified of unavailability, and then they were asked to make a final choice from the remaining alternatives. Their affect were measured afterward. In contrast, in the ‘affect measure first’ condition, the participants were not asked to make their choice until after they provided their affect ratings. Negative affect were measured by a semantic differential scale that was modified from Mano and Oliver (1993). It included frustrated, upset, agitated, discouraged, annoyed, and distressed.

We first tested the impact of the timing of information on choice. Because the analysis indicated no interaction between the timing of information and product categories as well as between the timing of information and the measurement order, we pooled the data. As predicted, we found in the high preference condition that the participants were less likely to select a similar alternative, when informed about product unavailability after (M = 63.6%), rather than before (M = 86.2%), making a choice. It is important to note that individuals who were notified prior to making a choice were more likely to select a similar alternative, compared to the control condition. The individuals who were notified after making a choice were less likely to select a similar alternative, compared to the control condition (M = 79.9%). These two findings also imply that we not only successfully replicated prior research, but also documented a strong boomerang effect. Additionally, as predicted, choice reversal was weak in the low preference condition. The participants’ choices were only marginally influenced by the timing of information (‘after’: M = 9.7%, ‘before’: M = 22.4%).

We also tested whether consumers who selected a dissimilar alternative would be less likely to elicit negative affect than those who selected a similar alternative. Consistent with our prediction, we found a significant main effect of choice on negative affect. The participants who chose a dissimilar alternative (M = 2.17) exhibited less negative affect than those who chose a similar alternative (M = 2.80). This finding confirms that consumers’ motivation to reduce their negative affect contributes to an increase in the choice probability of the avoidant dissimilar alternative.

In sum, we demonstrated that adding an attractive but unavailable product results in an increase in the choice share of a similar item if unavailability is revealed before the consumer makes a choice, but has the opposite effect if product unavailability is revealed after the consumer has made a choice. This choice reversal effect persisted, regardless of the product category and measurement order between choice and affective states. By examining the impact on choice of the timing of information, which has not been explored previously, we provided new insights into the mechanism that underlies the choice reversal phenomenon. None of the cognitive explanations put forth in earlier research can adequately account for the entire pattern of results observed in this study. We confirmed that it is an individual’s desire to cope with negative affect that impacts choice reversal.

"Promotion Reactance: The Role of Effort-Reward Congruity"

Ran Kivetz, Columbia University

Marketing promotions and incentives can be a double-edged sword. On the one hand, as prior research and common wisdom suggest, consumers are enticed by the proffered benefits and rewards. On the other hand, the present research assumes that consumers may perceive the incentives as intended to influence their consumption behavior and limit their brand choice. Such threats to consumers’ perceived freedom arouse promotion reactance.

Building on a synthesis of reactance theory (Brehm 1966) and research on intrinsic motivation (Lepper 1981), it is proposed that consumers may proactively protect their sense of individual agency and freedom by choosing rewards that are congruent with the required consumption effort (e.g., choosing reward Rx over reward Ry when expending effort Ex and vice-versa when expending effort Ey). Selecting effort-congruent rewards can reduce promotion reactance by enabling consumers to perceive themselves as engaging in the effort activity for its own sake and not in order to attain some extrinsic goal. In contrast, choosing rewards that are incongruent with (i.e., unrelated to) the required effort emphasizes an external attribution for one’s behavior (e.g., “I do x in order to earn y”), and hence, cannot reduce promotion reactance.

In addition to reactance reduction, a preference for effort-reward congruity might have other possible explanations. First, consumers may prefer rewards that are classified in the same mental category as the required effort activity or sponsor of the reward (O’Curry 1999; Thaler 1985). Second, the required effort activity may prime (i.e., increase the cognitive accessibility of) congruent rewards (e.g., Herr 1989). Third, consumers may infer their tastes from the effort activity, such that they presume that they want or need the required consumption activity, and therefore, choose a similar or identical reward. These alternative accounts, as well as the reactance-based explanation, are examined in a series of five studies.

Study 1 demonstrates a robust preference for effort-reward congruity. Study 2 shows that the preference for effort-reward congruity is stronger among consumers who experience greater psychological reactance. Study 3 employs a manipulation (rather than measurement) of reactance and demonstrates that the congruity preference can be attenuated and even reversed when consumers read (i.e., before making reward choices) supposedly scientific
information, in actuality intended to reduce promotion reactance. Study 4 demonstrates that consumers prefer rewards that are congruent with their source or sponsor (e.g., free groceries from a grocery store) only when the rewards require investing effort; the preference for congruent rewards is attenuated when identical rewards are obtained from the same sponsor without any personal effort commitment. Study 5 employs a field experiment using real choices in an actual café loyalty program. The results indicate that customers are significantly more likely to redeem a congruent reward when they explicitly contract to invest effort in order to earn a reward compared to when the (same) effort is incidental to reward attainment. The findings are consistent with the reactance-based account, but not with the alternative explanations.

The results are integrated and their theoretical implications for research on intrinsic motivation are discussed. For example, a question that naturally arises is whether the impact of the effort-reward relation extends beyond reward preferences to the subsequent interest in the promoted consumption activity. Specifically, would engaging in an effort activity for the sake of an effort-congruent rather than incongruent reward lead to greater preference and long-term loyalty for the reinforced activity? It is striking that research on intrinsic motivation has not examined rewards identical to the required effort. Thus, further research could investigate whether the use of effort-congruent rewards attenuates the well-known overjustification effect.

Finally, beyond the theoretical significance of promotion reactance and the related preference for effort-reward congruity, this issue has important implications for the design of incentive systems and motivational plans. For example, while many loyalty programs in the current marketplace offer effort-congruent rewards, numerous other programs use rewards that differ considerably from the promoted consumption (e.g., Kellogg’s offers 1000 AAdvantage frequent flyer miles for consumers who buy 10 cereal boxes). The issue of whether or not to provide in-kind (i.e., effort-congruent) rewards is a topic of continuing debate among marketers and consultants. Although multiple factors determine the appropriate rewards for the investment of effort (see Kivetz and Simonson 2002; Kivetz 2003), the present research indicates that, ceteris paribus, effort-congruent benefits may engender desirable attributions and better fit consumer preference. Thus, both marketers and consumers may benefit from incentive systems that reinforce the effort activity and emphasize intrinsic motivation rather than extrinsic goals.

References